Planificación de

Modelado y Simulación de Sistemas Dinámicos

Código/s: Electiva

Identificación y características del Espacio Curricular					
Carrera/s:	Licenciatura en Ciencias de la Computación				
Plan de Estudios:	2010, TO2024		Carácter:	Electiva	
Bloque/Campo:			Área:	Ciencias Básic Específicas	cas Generales y
Régimen de cursado:	Cuatrimestral				
Cuatrimestre:	- [LCC], 1º [LCC]				
Carga horaria:	75 hs. / 5 hs. sem	anales	Formato curricular:	Asignatura	
Escuela:	Ciencias Exactas	y Naturales	Departamento:	Ciencias de la	Computación
Docente responsable	KOFMAN, Ernesto	0			
Programa Sintético					
			e Tiempo Discreto. Si ión de Sistemas Conti		
Espacios Curricular	es Relacionados				
Previos Aprobados:					
Simultaneos Recome	ndados:				
Posteriores:					
Vigencia desde 2024					
Firma Prof	esor	Fecha	Firma Aprob. Esc	uela	Fecha
Con el aval de	l Consejo Asesor:				

Fundamentación

La asignatura brinda un área de aplicación interdisciplinaria para distintos conceptos incorporados previamente en la carrera. Las distintas ingenierías, la física, la química y la biología, entre otras ciencias, hacen uso de modelos de sistemas dinámicos. La simulación de estos modelos, sin embargo, requiere el uso de herramientas que incluyen desde elementos de compiladores y de teoría de grafos hasta métodos numéricos que permiten transformar las descripciones de modelos orientados a objetos en código eficiente de simulación. De esta forma, esta asignatura, ubicada en el último año de la carrera permite integrar conceptos vistos en materias anteriores con aplicaciones afines a distintas disciplinas ampliando así las capacidades del egresado.

Resultados del aprendizaje

Al finalizar el cursado los/las estudiantes serán capaces de:

RA1 Distinguir entre las distintas categorías de modelos y familiarizarse con los distintos formalismos de representación de los mismos.

RA2 Conocer las principales técnicas de modelado y simulación de sistemas dinámicos.

RA3 Implementar y programar las distintas herramientas y algoritmos estudiados en el curso.

Competencias / Ejes transversales y Resultados del Aprendizaje

Competencia/Eje transversal al que tributa Nivel Resultados del Aprendizaje

CGT1-Identificación, formulación y	Alto	RA1
resolución de problemas de informática		
CGT4-Utilización de técnicas y	Medio	RA2, RA3
herramientas de aplicación en la informática		

Programa Analítico

Unidad 1. Introducción al Modelado y Simulación

- 1.1 Sistemas Dinámicos y Modelos Matemáticos
- 1.2 Principios de la Teoría General de Sistemas
- 1.3 Modelos Continuos y Discretos
- 1.4 Representación General de Sistemas Dinámicos

Unidad 2. Sistemas de Tiempo Discreto

- 2.1 Ecuaciones en Diferencias
- 2.2 Simulación de Sistemas de Tiempo Discreto.
- 2.3 Representaciones Orientadas a Objetos en Modelica.
- 2.4 Ejemplos y Aplicaciones.

Unidad 3. Sistemas de Eventos Discretos

- 3.1 Grafos de Transición de Estados y Redes de Petri
- 3.2 Representaciones Orientadas a Objetos en Modelica.
- 3.3 El Formalismo DEVS
- 3.4 Ejemplos y Aplicaciones

Unidad 4. Modelado de Sistemas de Tiempo Continuo

4.1 Ecuaciones Diferenciales y Diferenciales Algebraicas.

- 4.2 Propiedades de las Ecuaciones Diferenciales y sus Soluciones.
- 4.3 Representaciones Orientadas a Objetos en Modelica.
- 4.4 Ejemplos y Aplicaciones

Unidad 5 Simulación de Sistemas Continuos

- 5.1 Introducción a los Métodos de Integración Numérica
- 5.2 Ordenamiento de Sistemas de Ecuaciones Algebraico Diferenciales.
- 5.3 Compilación de Modelos Orientados a Objetos.
- 5.4 Ejemplos y Aplicaciones

Unidad 6. Simulación de Sistemas Híbridos

- 6.1 Detección y Tratamiento de Discontinuidades
- 6.2 Introducción a los Métodos de Integración por Cuantificación (QSS)
- 6.3 Herramientas de Software, Ejemplos y Aplicaciones

Modalidades de enseñanza

Clases teórico/prácticas en laboratorio de computación, con instancias de resolución de trabajos prácticos para cada unidad.

Recursos

Se utiliza un laboratorio informático para el desarrollo de la actividad. Para las clases teóricas se utiliza un proyector.

El material de trabajo teórico/práctico se pone a disposición de los alumnos en la plataforma de campus virtual de la facultad.

Actividades de Formación Práctica

Nº Nº	Titulo	Descripción
1	Sistemas de Tiempo Discreto.	Modelado y simulación de un sistema de tiempo discreto con
		aplicación al procesamiento de audio.
2	Sistemas de Eventos	Modelado y simulación de un sistema de eventos discretos (sistema
	Discretos	cola-procesador)
3	Sistemas de Tiempo Continuo	Modelado y simulación de un sistema de tiempo continuo mediante
		técnicas orientadas a objetos.
4	Simulación de Sistemas	Utilización de distintos algoritmos numéricos para simular sistemas
	Continuos	de tiempo continuo
5	Trabajo Final	Modelado y Simulación de un Sistema Híbrido complejo.

Evaluación

Para la aprobación cada alumno deberá entregar de manera individual los cuatro trabajos prácticos y realizar el trabajo final. Los trabajos prácticos involucran desarrollar modelos, simularlos y analizar los resultados con las distintas técnicas y herramientas vistas a lo largo del curso. El trabajo final involucra la construcción de un modelo más complejo, que combina características de tiempo discreto, eventos discretos y tiempo continuo y tanto la formulación del modelo como su simulación requiere el uso de las distintas técnicas vistas en el

Resultado de Aprendizaje	Actividades/Modalidad de Enseñanza	Modalidad de Evaluación
--------------------------	------------------------------------	-------------------------

RA1	Clases Teórico/Prácticas.	Trabajo Final
RA2	Clases Teórico/Prácticas y Trabajos Prácticos.	Trabajos Prácticos.
RA3	Clases Teórico/Prácticas y Trabajos Prácticos.	Trabajo Final

Bibliografía básica					
Autores (Apellido, Inicial nombre)	Año de edición	Título de la obra	Editorial o Revista	Ejemplares disponibles o sitio web	
B. Zeigler, A. Muzy y E. Kofman	2018	Theory of Modeling and Simulation (3rd Edition)	Elsevier	1	
F. Cellier y E. Kofman	2006	Continuous System Simulation	Springer	2	
Fritzson, P.	2015	Fritzson, Peter. Introducción al modelado y simulación de sistemas técnicos y físicos con modelica	Linköping University Electronic Press	http://www.diva-por tal.org/smash/get/di va2:853769/fulltext 01.pdf	
Kofman, E.	2023	Dinámica de los Sistemas Físicos. Notas de clase	Apuntes de clase	https://fceia.unr.edu .ar/~kofman/files/ap unte_dsf.pdf	

Bibliografía complementaria				
Autores (Apellido, Inicial nombre)	Año de edición	Título de la obra	Editorial o Revista	Ejemplares disponibles o sitio web

Distribución de la carga horaria

Presenciales

Teóricas		25 Hs.
Prácticas	Formación Experimental	25 Hs.
	Resolución de Problemas vinculados a la Profesión	
	Resolución de Problemas y Ejercicios	25 Hs.
	Actividades de Proyecto y Diseño	
	Formación en la Práctica Profesional	
Evaluaciones		

Total 75 Hs.

Dedicadas por el alumno fuera de clase

Preparación Teórica	5 Hs.
Preparación Práctica	5 Hs.
Elaboración y redacción de informes, trabajos, presentaciones, etc.	15 Hs.
Total	25 Hs.

Cronograma de actividades

Semana	Unidad	Tema	Actividad
1	1.1 - 1.4		
2	2.1 - 2.2	Sistemas de Tiempo Discret	1
3	2.3 - 2.4	Modelica y Sistemas de Tiempo Discreto	1
4	3.1 - 3.2		2
5	3.3 - 3.4		2
6	4.1	Modelos en Ecuaciones Diferenciales	3
7	4.2	Propiedades de las Ecuaciones	3
		Diferenciales.	
8	4.3	Representaciones Orientadas a Objetos.	3
9	4.4	Ejemplos de distintos dominios	3
10	5.1		4
11	5.2	Algoritmos de Causalización	4
12	5.3	Algoritmos de Traducción de Modelos	4
13	5.4	Ejemplos y Aplicaciones	4
14	6.1 - 6.2	Discontinuidades y Cuantificación de	5
		Estados.	
15	6.3		5