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Abstract. In this paper we study approximations of a singularly
perturbed system of two coupled reaction-diffusion equations, in
one dimension, by using finite elements on graded meshes. When
the parameters are of different magnitudes, the solution exhibits
in general two distinct but overlapping boundary layers. We prove
that, when the mesh grading parameter is appropriately chosen,
optimal error estimations in a balanced norm for piecewise linear
elements can be obtained. Supporting numerical results are also
presented.

1. Introduction

Singularly perturbed systems of ordinary differential equations ap-
pear when investigating diffusion processes complicated by chemical re-
actions where the parameters multiplying the highest derivatives char-
acterize the diffusion coefficient of the substances [24]. Another inter-
esting application is in ecology, where reaction-diffusion systems can
be used to describe the prey-predator interaction species [8]. There are
several papers devoted to the numerical approximations of singularly
perturbed systems of coupled reaction-diffusion equations (see, for ex-
ample, [5, 11, 13, 14, 15, 17, 19, 22]). Problems with different layers in
one coordinate direction or systems of reaction-diffusion equations, still
present several challenges. In [14], the authors consider a system of two
reaction-diffusion equations in one dimension, with different small pa-
rameters multiplying the second-order derivatives in the equations. In
that work, they analyze finite element approximations, with Shishkin
and Bakhvalov meshes, and obtain error estimates in the energy norm.
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It is well known that, for singularly perturbed reaction-diffusion
problems, the natural energy norm is not balanced and so, the inter-
est of work with balanced norms, which reflect the behavior of layers
more accurately in the finite element method, have increased in the last
years (see [1, 2, 3, 10, 18, 20, 23] and the references therein). The error
estimation using balanced norms for systems of two coupled reaction-
diffusion equations with different small parameters, still presents open
questions even in the one dimensional case such, for instance, how to
design an efficient mesh according to different perturbed parameters
[12, 21, 22].

In this paper, we analyze the finite element approximation of a sin-
gularly perturbed system of ordinary differential equations, by using
piecewise linear elements on graded meshes. First, we analyze the gen-
eral case of variable coefficients but with the same small perturbation
parameter in both equations. Then, we consider the case of different
small parameters multiplying the second-order derivatives but assum-
ing constant coefficients in both equations.

Graded meshes satisfy some interesting properties. One of the most
relevant is the fact that a mesh designed for some value of the pertur-
bation parameter also works well also for larger values of it and we can
obtain optimal error estimates by using graded meshes (of the same
type to those introduced in [3]), designed according to the smallest
parameter of the system.

To achieve these optimal error estimates, our analysis requires the
introduction of appropriate L2-projections and the analysis of their
stability and interpolation capabilities on graded meshes.

The rest of the paper is organized as follows. In Section 2, we state
the reaction-diffusion coupled problem and recall a priori estimates for
the solution. In Section 3, we introduce the graded meshes which we
use for the finite element discretization. We also obtain interpolation
error estimates, stability results for L2-projections and a preliminary
result about the numerical approximation of one singularly perturbed
reaction-diffusion equation. Section 4 contains our main results con-
cerning the optimal approximation error estimates in balanced norms.
In Section 5, we present some numerical examples which show the
good performance of the proposed approach. Finally, we end the paper
drawing some conclusions in Section 6.

2. Problem Statement

We consider the following system of two coupled reaction-diffusion
equations in I = (0, 1):
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(1)


−ε2u′′

1(x) + a11(x)u1(x) + a12(x)u2(x) = f1(x)

−µ2u′′
2(x) + a21(x)u1(x) + a22(x)u2(x) = f2(x)

u1(0) = u1(1) = u2(0) = u2(1) = 0

where f = (f1(x), f2(x)) and A = (aij(x))1≤i,j≤2 are smooth on [0, 1].
We are interested in the singularly perturbed case, that is, when at

least one of the singular parameters ε or µ is ≪ 1. Due to that, the
solution u = (u1, u2)

T may exhibit boundary layers of width O(ε ln ε)
and O(µ lnµ) at x = 0 and x = 1, which could overlap and interact
according to the relative size of ε and µ (see, for example, [17, 21]).

From now on, we assume

0 < ϵ ≤ µ ≤ 1.

The matrix A has bounded entries aij(x) and we assume that aii >
0, aij ≤ 0, i ̸= j, 1 ≤ i, j ≤ 2, and there exists α ̸= 0 such that

(2) min
[0,1]

{a11 + a12, a21 + a22} ≥ α2.

Since, as a consequence of (2), A is an M–matrix, from [15, Theorem
2.2 and Remark 2.5], we can also assume that

(3) ξtAξ ≥ α2ξtξ, ∀ξ ∈ R2.

We denote with boldface the spaces consisting of vector valued func-
tions. The norms and seminorms in Hm(D) and Hm(D), with m an
integer, are denoted by ∥ · ∥m,D and | · |m,D respectively and (·, ·)D de-
notes the inner product in L2(D) or L2(D) for any subdomain D ⊂ I.
The domain subscript is dropped for the case D = I. We also denote
by ⟨·, ·⟩ the Euclidean product on Rd and | · |2 = ⟨·, ·⟩.
Let

B(u,v) :=∫ 1

0

ε2u′
1v

′
1 + a11u1v1 + a12u2v1 + µ2u′

2v
′
2 + a21u1v2 + a22u2v2,

and

L(v) :=

∫ 1

0

f1v1 + f2v2.

The variational formulation is: find u = (u1, u2)
T ∈ V := H1

0(I) such
that

B(u,v) = L(v) ∀v ∈ V.
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The following result, which is a consequence of [14, Lemma 1] and
[17, Lemma 4], shows the behaviour of the exact solution to be approx-
imated and its derivatives up to order 2. Similar estimates for all the
derivatives, assuming analytic data, can be found in [21].

Lemma 2.1. Let u be the solution to (1). Then there exists a constant
C, such that for all x ∈ [0, 1] we have

u = v +w,

where the regular solution component v satisfies

|v′i| ≤ C and |v′′i | ≤ C, i = 1, 2

while the layer component w satisfy

|w′
1| ≤ C

(
ε−1e−αx

ε + µ−1e−α x
µ + ε−1e−α 1−x

ε + µ−1e−α 1−x
µ

)
,

|w′
2| ≤ C

(
µ−1e−α x

µ + µ−1e−α 1−x
µ

)
,

|w′′
1 | ≤ C

(
ε−2e−αx

ε + µ−2e−α x
µ + ε−2e−α 1−x

ε + µ−2e−α 1−x
µ

)
,

|w′′
2 | ≤ C

(
µ−2e−α x

µ + µ−2e−α 1−x
µ

)
.

Given a partition Th = {0 = x0 < x1 < . . . < xM = 1}, we denote
Ii = (xi−1, xi), hi = xi − xi−1 with 1 ≤ i ≤ M , and we define

ĥ0 = h1,

ĥk =
1

2
(hk+1 + hk), 1 ≤ k ≤ M − 1,

ĥM = hM .

We consider the finite element space

Vh =
{
v = (v1, v2)

T ∈ V : vj|Ii ∈ P1(Ii), i = 1, . . . ,M, j = 1, 2
}
,

and the space Vh = {v ∈ H1
0 (I) : v|Ii ∈ P1(Ii), i = 1, . . . ,M} , where

P1(D) denotes the space of linear polynomials on a domain D.
We denote by ϕi, i = 0, . . . ,M , the classical Lagrange linear basis

functions such that ϕi(xj) = δij, i, j = 0, . . . ,M .
For a generic interval Iℓ = (xℓ−1, xℓ) of the partition, we denote

xℓ
1 = xℓ−1 and xℓ

2 = xℓ. We also set the local basis functions ϕℓ
1 = ϕℓ−1

and ϕℓ
2 = ϕℓ, and the local lengths ĥℓ

1 = ĥℓ−1 and ĥℓ
2 = ĥℓ.

The conforming finite element formulation is given by: find uh ∈ Vh

such that

B(uh,v) = L(v) ∀v ∈ Vh.
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Using the classical theory we can affirm that the problem is well-defined
and there exists a unique solution uh ∈ Vh. Error estimates, which are
robust in the natural energy norm

∥u∥2e = ε2∥u′
1∥20 + µ2∥u′

2∥20 + α2(∥u1∥20 + ∥u2∥20),

were obtained for different kind of meshes (see, for example, [5, 14,
19]). In the present article, we are interested in obtaining robust error
estimates in a balanced norm. To this end, following [22], we consider
the balanced norm which is defined by introducing a different scaling
of the H1 seminorm:

|||u|||2 = ε∥u′
1∥20 + µ∥u′

2∥20 + α2(∥u1∥20 + ∥u2∥20)

As explained in [22], this norm reflects the layer behavior correctly.

3. Graded meshes and preliminary results

In this section we introduce the graded meshes that we use for the fi-
nite element approximation of problem (1). We obtain interpolation er-
ror estimates, stability results for L2-projections and also a preliminary
result about the numerical approximation of one singularly perturbed
reaction-diffusion equation.

3.1. Graded meshes. Let us introduce a family of graded meshes Th

as in [3]. Let be h > 0, related to the mesh size, and let

(4) γ = 1− 1

2 log 1
ε

and s =
1

1− γ
,

be the grading parameters. Then, the graded meshes are obtained in
the following way.

Let x0, x1, . . . , xmid be the grid points on the interval [0, 1
2
] given by

(5)



x0 = 0,

x1 = hs,

xi+1 = xi + hxγ
i , i = 1, . . . ,mid−2,

xmid =
1

2
,

where mid is such that xmid−1 < 1
2
and xmid−1 + hxγ

mid−1 ≥ 1
2
. We

assume that the interval (xmid−1, xmid) is not too small in comparison
with the previous one (xmid−2, xmid−1).

This partition is extended to a grid {x0, x1, . . . , xmid, . . . , xM} of [0, 1]
with M = 2mid, by setting xi = 1− xM−i for i = mid+1, . . . ,M . The
resulting mesh will be referred as an ε-graded mesh.
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Figure 1. Mesh functions for ε = 0.1, with M = 17
and h = 0.4 (left) and M = 39 and h = 0.2 (right).

In order to show the behaviour of the graded meshes near the layers,
in figure (3) we plot the nodes xi against i/M for i = 0, . . . ,M .

From now on, we use the letter C to denote a generic constant which
is independent of ε, µ and h. Given two quantities A and B the nota-
tions A ≲ B and A ≳ B mean that A ≤ CB and A ≥ CB respectively.
We also denote by A ∼ B when A ≲ B and A ≳ B.

Since xi − xi−1 = hxγ
i−1 for i = 1, . . . ,mid − 1 we see that the

maximum length of the intervals is like h(1/2)γ ∼ h. Therefore, since
M is the number of intervals of the mesh, we have M ≳ 1/h.

On the other hand, it is proved in [6, proof of Corollary 4.5] that

M ≲ log

(
1

ε

)
1

h
log

(
1

h

)
,

and then using that M ≳ 1/h, we also obtain

h ≲ log

(
1

ε

)
1

M
logM.

Hence, we see that h is bounded almost uniformly with respect to
ε (up to a logarithmic factor) by the number of elements, similar to
the case of quasi-uniform meshes also except for the logarithmic factor
logM .

In what follows, we write the error estimates in terms of h, but they
can be traduced in terms of the number of degrees of freedom since

(6)
1

M
≲ h ≲ log

(
1

ε

)
1

M
logM.

Remark 3.1. We observe that our mesh is constructed first in the
interval [0, 1

2
] and then we reflect it into the interval

[
1
2
, 1
]
. Since we

enforce the point x = 1
2
to be a node, may be necessary to modify the



ANALYSIS IN BALANCED NORMS FOR SYSTEMS 7

mesh on
[
0, 1

2

]
in order to satisfy condition (13), and we can achieve

that just by eliminating the node xmid−1 if

xmid − xmid−1 <
1

2
(xmid−1 − xmid−2) .

In fact, assuming this, we note that from the definition of the graded
mesh we have

xi − xi−1 < 2 (xi−1 − xi−2) , i = 1, . . . ,mid−1.

Then the last interval after elimination of xmid−1 has length xmid −
xmid−2 and we have

xmid − xmid−2 ≤
3

2
(xmid−1 − xmid−2) < 3 (xmid−2 − xmid−3) .

Also

xmid − xmid−2 > xmid−1 − xmid−2 > xmid−2 − xmid−3.

Therefore

1 <
xmid − xmid−2

xmid−2 − xmid−3

< 3

as we desired.

3.2. Lagrange interpolation. In this Subsection we obtain robust
error estimates in the balanced norm for the Lagrange interpolant on
ε-graded meshes.

The following two results deal with the interpolation error on the
interval (0, 1) for functions with the same kind of behavior as stated in
Lemma 2.1.
From now on, we assume that ε < e−2, as otherwise the subsequent

analysis can be carried out using standard techniques.

Lemma 3.1. Let u ∈ H1
0 (0, 1) be such that

|u(x)| ≤ C0,

|u′(x)| ≤ C0

(
1 + ε−1e−αx

ε + ε−1e−α 1−x
ε + µ−1e−α x

µ + µ−1e−α 1−x
µ

)
,

for all x ∈ (0, 1), with C0 ≥ 0 independent of ε and µ. Then, if uI

denotes the piecewise linear Lagrange interpolant of u on an ε-graded
mesh, there exists a constant C such that

∥u− uI∥0,I ≤ Ch.

Proof. Since u is bounded, we have

∥u− uI∥20,I1 ≤ 4|I1|∥u∥2L∞(I1)
≤ 2C0|I1|.
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Using that |I1| = hs, we get

∥u− uI∥20,I1 ≤ Chs = Ch
1

1−γ = Ch2 log 1
ε ≤ Ch2,

because we have assumed ε ≤ e−2.
Let

bε(x) = 1 + ε−1e−αx
ε + ε−1e−α 1−x

ε ,

bµ(x) = 1 + µ−1e−α x
µ + µ−1e−α 1−x

µ .

Using that for each interval Ii we have

∥u− uI∥0,Ii ≤ C|Ii|∥u′∥0,Ii
and since for 2 ≤ i ≤ mid it holds |Ii| ≤ hxγ for all x ∈ Ii, we obtain

∥u− uI∥2
0,(0, 12)\I1

≤ h2∥xγu′∥2
0,(0, 12)

≤ Ch2
(
h2 + ∥xγbε∥20,(0, 12) + ∥xγbµ∥20,(0, 12)

)
.

Since ε ≤ µ, we have that

γ = 1− 1

2 log 1
ε

≥ 1− 1

2 log 1
µ

:= γµ

and therefore xγ ≤ xγµ on
(
0, 1

2

)
. Then

∥u− uI∥2
0,(0, 12)\I1

≤ Ch2
(
1 + ∥xγbε∥20,(0, 12) + ∥xγµbµ∥20,(0, 12)

)
.

It can be checked that

(7) ∥xγbε∥0,(0, 12) ≤ C and ∥xγµbµ∥0,(0, 12) ≤ C.

Indeed, for the first inequality, recalling the definition of bε, we have

∥xγbe∥0,(0, 12) ≤
∥∥xγ

(
1 + 2ε−1e−αx

ε

)∥∥
0,(0, 12)

≤ C + 2
∥∥xγε−1e−αx

ε

∥∥
0,(0, 12)

.

But, using the substitution y = x/ε, we get∥∥xγε−1e−αx
ε

∥∥2
0,(0, 12)

=

∫ 1
2

0

x2γε−2e−2αx
ε dx ≤ ε2γ−1

∫ ∞

0

y2γe−2αy dx.

Since 2γ − 1 ≥ 0 for ε ≤ e−1, we have that the last integral is finite
(with the constant involved depending only on α), and we obtain, in
this case, the first estimate of (7). The case ε > e−1 is clear. Second
estimate in (7) follows similarly.

Therefore, we obtain that

∥u− uI∥0,(0, 12) ≤ Ch.
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Clearly a similar estimate can be obtained for the interval
(
1
2
, 1
)
. □

Remark 3.2. With a similar proof, for ε small enough, by using the
interpolation error estimate

∥u− uI∥0,Ii ≤ C|Ii|2∥u′′∥0,Ii
on the intervals Ii ⊂ (0, 1

2
) \ I1, it can be proved that the inequality

∥u− uI∥0,I ≤ Ch2

holds for ε-graded meshes.

Lemma 3.2. Let u ∈ H2(0, 1)∩H1
0 (0, 1) and uI be its piecewise linear

Lagrange interpolation on an ε-graded mesh.

i) Suppose |u′′| ≤ C0

(
1 + ε−2e−αx

ε + µ−2e−α x
µ + ε−2e−α 1−x

ε + µ−2e−α 1−x
µ

)
for some constant C0 independent of ε and µ. Then, we have

(8) ∥(u− uI)′∥0 ≤ Cε−
1
2h.

ii) If |u′′| ≤ C0

(
1 + µ−2e−α x

µ + µ−2e−α 1−x
µ

)
, with C0 independent

of µ, then

(9) ∥(u− uI)′∥0 ≤ Cµ− 1
2h.

Proof. We will prove the results for the restriction to
(
0, 1

2

)
with a

boundary layer at x = 0, the corresponding result for a function with
a boundary layer at x = 1 on the interval

(
1
2
, 1
)
can be obtained by

using the same arguments, but estimates on µ instead of ε.
For the first interval I1, for γ given in (5), we can use the following

estimate (see, for example, [16, Proposition 1.2.4])

∥(u− uI)′∥0,I1 ≤ C|I1|1−γ∥xγu′′∥0,I1 ,
and for the rest of the intervals Ii, i = 1, . . . ,mid, we have

∥(u− uI)′∥0,Ii ≤ C|Ii|∥u′′∥0,Ii .
Then, we obtain

∥(u− uI)′∥2
0,(0, 12)

= ∥(u− uI)′∥20,I1 +
mid∑
i=2

∥(u− uI)′∥20,Ii

≤ C|I1|2−2γ∥xγu′′∥20,I1 + C
mid∑
i=2

|Ii|2∥u′′∥20,Ii .

Since
|I1| = hs, |Ii| = hxγ

i−1 i = 2, . . . ,mid
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we get

(10)
∥(u− uI)′∥2

0,(0, 12)
≤ Ch2s(1−γ)∥xγu′′∥20,I1 + C

mid∑
i=2

h2∥xγu′′∥20,Ii

≤ Ch2∥xγu′′∥2
0,(0, 12)

,

since 2s(1− γ) = 2.
In order to prove i) we observe that, since the function f(y) = ye−y

is decreasing for y > 1 and the integrals
∫∞
0

yδe−2αy dy are uniformly
bounded for δ ∈ [0, 4], taking into account that ε ≤ µ, we obtain

∥xγu′′∥2
0,(0, 12)

≤ C
(
1 + ε2γ−3

)
.

But 2γ − 3 = −1− 1
log 1

ε

and ε2γ−3 = eε−1, so

(11) ∥xγu′′∥2
0,(0, 12)

≤ C

ε
.

Thus, by combining (11) and (10), we get

∥(u− uI)′∥2
0,(0, 12)

≤ C

ε
h2.

To obtain ii) we observe that, in this case,

∥xγu′′∥2
0,(0, 12)

≤ C
(
1 + µ2γ−3

)
.

Therefore, by using this in (10) and the fact that µ2γ−2 < ε2γ−2, we
obtain

∥(u− uI)′∥2
0,(0, 12)

≤ Ch2
(
1 + µ2γ−3

)
≤ Ch2µ−1ε2γ−2.

Since ε2γ−2 = e, we have

∥(u− uI)′∥2
0,(0, 12)

≤ Cµ−1h2,

and the proof concludes. □

3.3. H1-Stability of L2 projections. In this Subsection we define
two different L2 projections and analyze their stability. These results
are a fundamental tool in order to obtain our error estimates.

First, for any u ∈ H1(I), we consider the typical L2 projection
P0(u) ∈ Vh as

(12)

∫
I

P0(u)v =

∫
I

uv, ∀v ∈ Vh.

The following Lemma provides the stability of P0 as a map from H1(I)
to Vh.
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Lemma 3.3. Assume that Th satisfies

(13)
|Ii−1| ≤ |Ii| ≤ c0|Ii−1|, 2 ≤ i ≤ mid,

|Ii+1| ≤ |Ii| ≤ c0|Ii+1|, mid ≤ i ≤ M − 1,

with 1 ≤ c0 < 3, then

∥(P0u)
′∥0 ≤ C∥u′∥0, ∀u ∈ H1(I),

with C = C(c0).

Proof. Following [4, Theorem 4.1], it is enough to check that condition
[4, ineq. (4.2)] is verified.
We define the 2× 2 matrices Gℓ, Dℓ and Hℓ by

Gℓ[i, j] = (ϕℓ
i , ϕ

ℓ
j)Iℓ , Dℓ = diag(∥ϕℓ

i∥20,Iℓ), Hℓ = diag(ĥℓ
i).

Now, we have to prove that there exists a positive constant c such that

(14) ⟨H−1
ℓ GℓHℓx

ℓ, xℓ⟩ ≥ c⟨Dℓx
ℓ, xℓ⟩ ∀xℓ ∈ R2.

First, we observe that

(15)
(
ϕℓ
i , ϕ

ℓ
j

)
Iℓ
=

{
1
3
hℓ if i = j

1
6
hℓ if i = 1, j = 2, or i = 2, j = 1.

Then it follows that

⟨H−1
ℓ GℓHℓx

ℓ, xℓ⟩ = 1

3
hℓ(x

ℓ
1)

2 +
1

6
hℓ

(
ĥℓ
2

ĥℓ
1

+
ĥℓ
1

ĥℓ
2

)
xℓ
1x

ℓ
2 +

1

3
hℓ(x

ℓ
2)

2.

Now we have,
i) if ℓ = 1,

ĥℓ
1 = h1,

ĥℓ
2 =

1

2
(h1 + h2) ≤

1 + c0
2

h1,

ĥℓ
2 ≥ h1,

ii) if 2 ≤ ℓ ≤ mid,

ĥℓ
1 =

1

2
(hℓ−1 + hℓ) ≤ hℓ,

ĥℓ
2 =

1

2
(hℓ+1 + hℓ) ≤

1 + c0
2

hℓ,

ĥℓ
1 ≥

1 + c0
2c0

hℓ,

ĥℓ
2 ≥ hℓ,

iii) if mid+1 ≤ ℓ ≤ M − 1,
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ĥℓ
1 =

1

2
(hℓ−1 + hℓ) ≤

1 + c0
2

hℓ,

ĥℓ
2 =

1

2
(hℓ+1 + hℓ) ≤ hℓ,

ĥℓ
1 ≥ hℓ,

ĥℓ
2 ≥

1 + c0
2c0

hℓ,

iv) if ℓ = M ,

ĥℓ
1 =

1

2
(hM + hM−1) ≤

1 + c0
2

hM ,

ĥℓ
2 = hM ,

ĥℓ
1 ≥ hM .

Now, since c0 ≥ 1, we have 1+c0
2

+ 1 ≤ 1 + c0 and so we get for any ℓ
that

ĥℓ
2

ĥℓ
1

+
ĥℓ
1

ĥℓ
2

≤ 1 + c0,

and ∣∣∣∣∣16hℓ

(
ĥℓ
2

ĥℓ
1

+
ĥℓ
1

ĥℓ
2

)
xℓ
1x

ℓ
2

∣∣∣∣∣ ≤ 1

12
hℓ(1 + c0)

[
(xℓ

1)
2 + (xℓ

2)
2
]
.

Then, we obtain

(16) ⟨H−1
ℓ GℓHℓx

ℓ, xℓ⟩ ≥ hℓ

12
(3− c0)[(x

ℓ
1)

2 + (xℓ
2)

2].

On the other hand,

(17) ⟨Dℓx
ℓ, xℓ⟩ = ∥ϕℓ

1∥20,Iℓ(x
ℓ
1)

2 + ∥ϕℓ
2∥20,Iℓ(x

ℓ
2)

2 =
1

3
hℓ

[
(xℓ

1)
2 + (xℓ

2)
2
]
.

Then (14) follows from (16) and (17). □

Now, for any v(x) = (v1(x), v2(x))
T ∈ H1

0(I) we define the projection
Qh(v) = (Qh,1(v), Qh,2(v))

T ∈ Vh as

(18) (AQhv,vh) = (Av,vh) ∀vh ∈ Vh.

The projection Qh is well defined thanks to the positive definiteness
(3) of A.

To prove the H1-stability of the projection Qh we follow again the
ideas of [4]. We need some preliminary definitions and results.
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For any interval Iℓ, we have the following four local vector basis
functions of Vh:

Φℓ
1 = (ϕℓ

1, 0)
T ,Φℓ

2 = (ϕℓ
2, 0)

T ,Φℓ
3 = (0, ϕℓ

1)
T ,Φℓ

4 = (0, ϕℓ
2)

T .

Now, we introduce the local matrices Gℓ,Hℓ,Dℓ ∈ R4×4 by

Gℓ[i, j] =
(
AΦℓ

i ,Φ
ℓ
j

)
Iℓ

Hℓ = diag
(
ĥℓ
1, ĥ

ℓ
2, ĥ

ℓ
1, ĥ

ℓ
2

)
Dℓ = diag

(
∥Φℓ

i∥20,Iℓ
)
.

We need the following assumption on the coefficient matrix A in order
to obtain the stability result.

Assumption 1. Assume that Th satisfies (13), with 1 ≤ c0 < 3, and
that there exists a positive constant β0 such that the entries of the
matrix A satisfy

(3− c0) aii(x)− (2 + c0) (|a21(x)|+ |a12(x)|) ≥ β0, i = 1, 2

for all x ∈ [0, 1].

Lemma 3.4. Under Assumption 1, there exists a positive constant d0
such that for h small enough we have

(19) ⟨H−1
ℓ GℓHℓx

ℓ,xℓ⟩ ≥ d0⟨Dℓx
ℓ,xℓ⟩ ∀xℓ ∈ R4.

Proof. A simple computation using the generalized integral mean value
theorem and (15) shows that

H−1
ℓ GℓHℓ =

hℓ

6


2a11(x11)

ĥ2

ĥ1
a11(x

′
11) 2a21(x21)

ĥ2

ĥ1
a21(x

′
21)

ĥ1

ĥ2
a11(x

′
11) 2a11(x

′′
11)

ĥ1

ĥ2
a21(x

′
21) 2a21(x

′′
21)

2a12(x12)
ĥ2

ĥ1
a12(x

′
12) 2a22(x22)

ĥ2

ĥ1
a22(x

′
22)

ĥ1

ĥ2
a12(x

′
12) 2a12(x

′′
12)

ĥ1

ĥ2
a22(x

′
22) 2a22(x

′′
22)


with xij, x

′
ij and x′′

ij, i, j = 1, 2, points in Iℓ, and

Dℓ =
hℓ

3
diag(1, 1, 1, 1).

Then, using that for any a, b ∈ R, ab ≤ a2

2
+ b2

2
, and the fact that

a12(x), a21(x) ≤ 0 and a11(x), a22(x) > 0, ∀x ∈ [0, 1], we have

⟨H−1
ℓ GℓHℓx,x⟩ ≥

hℓ

6

(
L1x

2
1 + L2x

2
2 + L3x

2
3 + L4x

2
4

)
,
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with

L1 :=

[
2a11(x11)−

1

2
a11(x

′
11)

ĥ2

ĥ1

− |a21(x21)| −
1

2
|a21(x′

21)|
ĥ2

ĥ1

−1

2
a11(x

′
11)

ĥ1

ĥ2

− |a12(x12)| −
1

2
|a12(x′

12)|
ĥ1

ĥ2

]
,

L2 :=

[
2a11(x

′′
11)−

1

2
a11(x

′
11)

ĥ2

ĥ1

− |a21(x′′
21)| −

1

2
|a21(x′

21)|
ĥ1

ĥ2

− 1

2
a11(x

′
11)

ĥ1

ĥ2

− |a12(x′′
12)| −

1

2
|a12(x′

12)|
ĥ2

ĥ1

]
,

L3 :=

[
2a22(x22)−

1

2
a21(x

′
21)

ĥ1

ĥ2

− |a21(x21)| −
1

2
|a22(x′

22)|
ĥ1

ĥ2

− 1

2
a12(x

′
12)

ĥ2

ĥ1

− |a12(x12)| −
1

2
|a22(x′

22)|
ĥ2

ĥ1

]
and

L4 :=

[
2a22(x

′′
22)−

1

2
a22(x

′
22)

ĥ2

ĥ1

− |a21(x′′
21)| −

1

2
|a21(x′

21)|
ĥ2

ĥ1

− 1

2
a12(x

′
12)

ĥ1

ĥ2

− |a12(x′′
12)| −

1

2
|a22(x′

22)|
ĥ1

ĥ2

]
.

Let L̄i(x), i = 1, . . . , 4 be defined as Li but replacing xij, x
′
ij and x′′

ij by
x for all i, j. Then our hypothesis implies that for all x ∈ [0, 1]

L̄1(x), L̄2(x) ≥ a11(x)

(
3

2
− 1

2
c0

)
−
(
1 +

1

2
c0

)
(|a12(x)|+ |a21(x)|) ≥

β0

2

and

L̄3(x), L̄4(x) ≥ a22(x)

(
3

2
− 1

2
c0

)
−
(
1 +

1

2
c0

)
(|a12(x)|+ |a12(x)|) ≥

β0

2
.

From the uniform continuity of aij on [0, 1] and the fact that xij, x
′
ij, x

′′
ij ∈

Iℓ, with |Iℓ| ≤ h, it follows that there exists h0 such that for h ≤ h0 we
have Li ≥ β0

4
, i = 1 . . . , 4 and then

⟨H−1
ℓ GℓHℓx,x⟩ ≥

β0

24
hℓ|xℓ|2.

Since

⟨Dℓx
ℓ,xℓ⟩ = hℓ

3
|xℓ|2
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we have that (19) holds for h ≤ h0 with d0 =
β0

8
. □

Now, we define the basis vector functions

Φ2k−1 = (ϕk, 0)
T , Φ2k = (0, ϕk)

T , k = 1, 2, . . . ,M − 1.

Let Dδ ∈ R(2M−2)×(2M−2) and Dϕ ∈ R(2M−2)×(2M−2) be the diagonal
matrices

Dδ = diag (δk) , Dϕ = diag
(
ĥk∥Φk∥0

)
,

with

δ2k−1 = δ2k =

√∑
ℓ∈I(k)

h−2
ℓ ∥Φk∥20,Iℓ .

Finally, we define the (2M − 2)× (2M − 2) Gram matrix G by

G[i, j] = (AΦi,Φj)I .

The proof of the next Lemma follows by the same arguments used in
[4, Lemma 5.1].

Lemma 3.5. Under Assumption 1 there exists a positive constant C
such that

|x| ≤ C|Gx| ∀x ∈ R2M

where G is the scaled Gram matrix defined by

G = D−1
ϕ GD−1

δ .

Hence, we obtain the following result.

Lemma 3.6. Under Assumption 1, we have

(20)
M∑
ℓ=1

h−2
ℓ (Avh,vh)Iℓ ≲

2M−2∑
k=1

[
(Avh,Φk)

ĥk∥Φk∥0

]2
,

for all vh ∈ Vh.

Proof. The proof follows the same ideas given in [4, Lemma 4.1], we
include it for the sake of completeness.
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Let vh =
2M−2∑
k=1

vk
hΦk ∈ Vh. For the left hand side of (20) we have

M∑
ℓ=1

h−2
ℓ (Avh,vh)Iℓ ≤ C

M∑
ℓ=1

h−2
ℓ ∥vh∥20,Iℓ

≤ C

M∑
ℓ=1

h−2
ℓ

∑
k∈J(ℓ)

(vk
h)

2∥Φk∥20,Tℓ

= C
2M−2∑
k=1

(vk
h)

2
∑
ℓ∈I(k)

h−2
ℓ ∥Φk∥20,Iℓ

= C
2M−2∑
k=1

(vk
h)

2δ2k = C
2M−2∑
k=1

x2
k = C|x|2,

where x = (xk)
2M−2
k=1 = (vk

hδk)
2M−2
k=1 .

The right hand side in (20) is

2M−2∑
k=1

[
(Avh,Φk)

ĥk∥Φk∥0

]2
=

2M−2∑
k=1

[
2M−2∑
j=1

vj
h

(AΦj,Φk)

ĥk∥Φk∥0

]2

=
2M−2∑
k=1

[
2M−2∑
j=1

xj

(AΦj,Φk)

δjĥk∥Φk∥0

]2

=
2M−2∑
k=1

[(Gx)k]
2 = |Gx|2.

Therefore, (20) follows from the previous Lemma. □

Now, we are able to prove the H1-stability of the Qh-projection. The
proof follows the lines of [4, Theorem 4.1].

Theorem 3.1. If Assumption 1 holds, then the operator Qh is H1(I)-
stable, i.e.,

∥Qhv∥1 ≤ C∥v∥1 for all v ∈ H1(I),

with C a positive constant independent of v and h.

Proof. We define Πhv = (vI1 , v
I
2)

T where vIj denotes the classical La-
grange interpolant of vj in Vh, j = 1, 2.
From the triangle inequality, the H1-stability of the classical La-

grange interpolant in Vh and the classical local inverse inequality ∥vh∥1,Iℓ ≤
h−1
ℓ ∥vh∥0,Iℓ for any vh ∈ Vh, it follows that there exists a constant C
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such that

∥Qhv∥21 ≤ C

(
∥Πhv∥21 +

M∑
ℓ=1

∥Qhv − Πhv∥21,Iℓ

)

≤ C

(
∥v∥21 +

M∑
ℓ=1

h−2
ℓ ∥Qhv − Πhv∥20,Iℓ

)
.

Now, using (3) we get that ∥v∥20,Iℓ is equivalent to (Av,v)Iℓ .
Hence, we obtain

M∑
ℓ=1

h−2
ℓ ∥Qhv − Πhv∥20,Iℓ ≤ C

M∑
ℓ=1

h−2
ℓ (A(Qhv − Πhv), Qhv − Πhv)Iℓ .

Denote by ωk the support of ϕk, that is, ωk = Ik ∪ Ik+1. From the
Lemma above and the Schwarz inequality, we can conclude that

M∑
ℓ=1

h−2
ℓ ∥Qhv − Πhv∥20,Iℓ ≤ C

2M∑
k=1

[
(A(Qhv − Πhv),Φk)

hk∥Φk∥0

]2
= C

2M∑
k=1

[
(A(v − Πhv),Φk)ωk

hk∥Φk∥0

]2

= C
2M∑
k=1

h−2
k ∥A(v − Πhv)∥20,ωk

≤ C
2M∑
k=1

∥v∥21,ωk
≤ C∥v∥21,

where we use again the Lagrange interpolation error estimates. □

3.4. An auxiliary estimate for a single reaction-diffusion equa-
tion. In this subsection we present, as a preliminary result, error esti-
mates in balanced norms for a singularly perturbed reaction-diffusion
equation.

Let us consider the reaction-diffusion equation

−µ2u′′(x) + b0u(x) =f(x) x ∈ (0, 1)

u(0) = u(1) = 0
(21)

with µ ≥ ε, b0 a positive constant and f smooth. It is well known that
the solution satisfies (see [9])

(22) |u(k)(x)| ≤ C
(
1 + µ−ke−b0

x
µ + µ−ke−b0

1−x
µ

)
, k = 0, 1, 2.
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The energy norm associated to the problem (21) is given by

∥u∥2e = µ2∥u′∥20 + b0∥u∥20,

and the corresponding balanced norm is given by

|||u|||2b = µ∥u′∥20 + b0∥u∥20.

From the definition of P0 given in equation (12) and since µ2(u′ −
u′
h, v

′) + b0(u− uh, v) = 0,∀v ∈ Vh, following [13, Subsection 2.3.1] we
get

∥uh − P0u∥2e = µ2

∫ 1

0

(u− P0u)
′(uh − P0u)

′

≤ µ2∥(u− P0u)
′∥0∥(uh − P0u)

′∥0
≤ µ∥(u− P0u)

′∥0∥uh − P0u∥e.
Thus,

µ∥(uh − P0u)
′∥0 ≤ ∥uh − P0u∥e ≤ µ∥(u− P0u)

′∥0,

and, in particular,

(23) ∥(uh − P0u)
′∥0 ≤ ∥(u− P0u)

′∥0.

By the triangular inequality and (23)

µ
1
2∥(u− uh)

′∥0 ≤ µ
1
2∥(u− P0u)

′∥0 + µ
1
2∥(P0u− uh)

′∥0
≤ 2µ

1
2∥(u− P0u)

′∥0.

Therefore, if we prove that

∥(u− P0u)
′∥0 ≤ Cµ− 1

2h

we would obtain

µ
1
2∥(u− uh)

′∥0 ≤ Ch.

Let uI ∈ Vh be the Lagrange interpolant of the solution u of (21).
Then, from H1-stability of the projection P0 (Lemma 3.3), we get

∥(u− P0u)
′∥0 ≤ ∥(u− uI)′∥0 + ∥[P0(u− uI)]′∥0

≤ (1 + C)∥(u− uI)′∥0.

Then, in view of (22) and the error estimate for Lagrange interpola-

tion given in Lemma 3.2, we have that ∥(u− uI)′∥0 ≤ Cµ− 1
2h. So

∥(u− P0u)
′∥0 ≤ Cµ− 1

2h,

and we have the following result.
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Theorem 3.2. Let u be the solution of the problem (21). Let uh ∈ Vh

the solution of −µ2(u′
h, v

′) + b0(uh, v) = (f, v),∀v ∈ Vh. Assuming that
the ε-graded mesh satisfies (13) we have that

∥(u− uh)
′∥0 ≤ Cµ− 1

2h.

As a consequence of the last theorem and the Lagrange interpolation
error estimates for the solution u, we have

∥u− uh∥0 ≤ ∥u− uh∥e ≤ Ch,

and therefore, we obtain the following estimate for the error in the
balanced norm

|||u− uh|||2b = µ∥(u− uh)
′∥20 + b0∥u− uh∥20 ≤ Ch2.

4. Error estimates in balanced norms

The goal of this Section is to obtain error estimates for the solution
of the coupled system (1) by using the ε-graded meshes introduced in
the previous Section.

First, we analyze a coupled system with equal perturbed parameters.
Then, we consider the case of a coupled system with two different small
parameters but assuming constant coefficients in both equations.

4.1. Case µ = ε.

Theorem 4.1. Let u = (u1, u2) be the solution of the system (1) with
ε = µ, and let uh = (uh,1, uh,2) be its corresponding finite element
approximation on Vh. Assuming Assumption 1 holds and that ε-graded
mesh satisfies the condition (13), we have that there exists a constant
C, independent of ε, such that

|||u− uh||| ≤ Ch.

Proof. Following the same ideas of the proof of Theorem 3.2, we observe
that, if we consider the Qh projector defined in (18) we have

C∥uh −Qhu∥2e ≤ B(uh −Qhu,uh −Qhu) = B(u−Qhu,uh −Qhu)

= ε2
∫ 1

0

(u−Qhu)
′ · (uh −Qhu)

′

≤ ε∥(u−Qhu)
′∥0∥uh −Qhu∥e.

Therefore, C∥uh −Qhu∥e ≤ ε∥(u−Qhu)
′∥0. Moreover, since ε∥(uh −

Qhu)
′∥0 ≤ ∥uh −Qhu∥e, we can conclude that

∥(uh −Qhu)
′∥0 ≤ C∥(u−Qhu)

′∥0.
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Then, using the Lagrange interpolant Πhu = (uI
1, u

I
2)

T and the H1-
stability of Qh obtained in Theorem 3.1 together with Poincare’s in-
equality, we get

ε
1
2∥(u− uh)

′∥0 ≤ ε
1
2∥ (u−Qhu)

′ ∥0 + ε
1
2∥ (Qhu− uh)

′ ∥0
≤ Cε

1
2∥ (u−Qhu)

′ ∥0
≤ Cε

1
2

{
∥ (u− Πhu)

′ ∥0 + ∥ [Qh (u− Πhu)]
′ ∥0
}

≤ Cε
1
2∥ (u− Πhu)

′ ∥0.
Therefore, from Lemma 3.2, we obtain

(24) ε
1
2∥(u− uh)

′∥0 ≤ Ch.

On the other hand, from the Galerkin orthogonality and the La-
grange interpolation error estimates of Lemmas 3.1 and 3.2, we have

(25) ∥u− uh∥0 ≤ ∥u− uh∥e ≤ ∥u− Πhu∥e ≤ Ch.

Thus, the proof concludes from inequalities (24) and (25). □

Remark 4.1. We want to observe that our results can be extended,
by analogous arguments, to the case of more than two equations. For
example, for the case of three equations the main results can be obtained
by assuming that the entries of the matrix A satisfy that aii > 0, aij ≤
0, i ̸= j, 1 ≤ i, j ≤ 3, there exists α ̸= 0 such that

min
x∈[0,1]

{
3∑

j=1

aij(x), 1 ≤ i ≤ 3

}
≥ α2

and

(3− c0) aii(x)− (2 + c0)
∑
j ̸=i

(|aji(x)|+ |aij(x)|) ≥ β0, i = 1, 2, 3

for all x ∈ [0, 1].

4.2. Case ε ̸= µ. In this Subsection we analyze the case in which we
have two different small perturbed parameters but all the entries of the
matrix A are constants.

We observe that, if we consider again the projectorQhu = (Qh,1u, Qh,2u)
T

we have that∫
I

(a11Qh,1u+ a12Qh,2u) v1 =

∫
I

(a11u1 + a12u2) v1 ∀v1 ∈ Vh,∫
I

(a21Qh,1u+ a22Qh,2u) v2 =

∫
I

(a21u1 + a22u2) v2 ∀v2 ∈ Vh,
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and so

C∥uh −Qhu∥2e ≤ B(uh −Qhu,uh −Qhu) = B(u−Qhu,uh −Qhu)

= ε2
∫ 1

0

(u1 −Qh,1u)
′(uh,1 −Qh,1u)

′+

µ2

∫ 1

0

(u2 −Qh,2u)
′(uh,2 −Qh,2u)

′

≤ ε2∥(u1 −Qh,1u)
′∥0∥(uh,1 −Qh,1u)

′∥0+
µ2∥(u2 −Qh,2u)

′∥0∥(uh,2 −Qh,2u)
′∥0

≤ [ε∥(u1 −Qh,1u)
′∥0 + µ∥(u2 −Qh,2u)

′∥0] ∥uh −Qhu∥e.
Thus,

ε∥(uh,1 −Qh,1u)
′∥0 + µ∥(uh,2 −Qh,2u)

′∥0 ≤
C∥uh −Qhu∥e ≤ ε∥(u1 −Qh,1u)

′∥0 + µ∥(u2 −Qh,2u)
′∥0,

and, in particular, we have

ε∥(uh,1 −Qh,1u)
′∥0 ≤ ε∥(u1 −Qh,1u)

′∥0 + µ∥(u2 −Qh,2u)
′∥0,

µ∥(uh,2 −Qh,2u)
′∥0 ≤ ε∥(u1 −Qh,1u)

′∥0 + µ∥(u2 −Qh,2u)
′∥0.

We observe that, in view of the previous results, we might expect

∥(u1 −Qh,1u)
′∥0 ≤ Cε−

1
2h,

∥(u2 −Qh,2u)
′∥0 ≤ Cµ− 1

2h,

however, we could only get

ε
1
2∥(uh,1 −Qh,1u)

′∥0 ≤ Ch

[
1 +

(µ
ε

) 1
2

]
,

µ
1
2∥(uh,2 −Qh,2u)

′∥0 ≤ Ch

[
1 +

(
ε

µ

) 1
2

]
,

and so these would not give the desired estimate for ε
1
2∥(uh,1−Qh,1u)

′∥0.
In order to get the optimal estimations in the balanced norm, we use

a trick introduced by Roos [22] defining the projection û = (û1, û2) ∈
Vh as: ∀v1, v2 ∈ Vh,
(26)

(a11û1(x) + a12û2(x), v1) = (a11u1(x) + a12u2(x), v1) ,

µ2(û′
2, v

′
2) + (a21û1(x) + a22û2(x), v2) = µ2(u′

2, v
′
2) + (a21u1(x) + a22u2(x), v2) .

From the first equation of (26) we have

(û1(x), v1) =

(
u1(x) +

a12
a11

(u2(x)− û2(x)), v1

)
, ∀v1 ∈ Vh,
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and so we can eliminate û1 in the second equation of (26) and get

µ2(û′
2, v

′
2) +

(
a21

[
u1(x) +

a12
a11

(u2(x)− û2(x))

]
+ a22û2(x), v2

)
= µ2(u′

2, v
′
2) + (a21u1(x) + a22u2(x), v2) , ∀v2 ∈ Vh.

Therefore,

(27) µ2(û′
2, v

′
2) +

[(
a22 − a21

a12
a11

)
û2(x), v2

]
= µ2(u′

2, v
′
2) +

[(
a22 − a21

a12
a11

)
u2(x), v2

]
, ∀v2 ∈ Vh.

Let cA = a22 − a21
a12
a11

, which satifies

cA =
a22a11 − a21a12

a11
=

det(A)

a11
> 0.

Then, the equation (27) can be written as

µ2(û′
2, v

′
2) + (cAû2, v2) = µ2(u′

2, v
′
2) + (cAu2, v2), ∀v2 ∈ Vh.

Thus, û2 is indeed the projection on Vh of u2 with the inner product
aµ(u, v) = µ2(u′, v′) + cA(u, v), i.e.,

aµ(u2 − û2, v) = 0, ∀v ∈ Vh.

Then, taking into account that

(P0u2, v) = (u2, v), ∀v ∈ Vh,

we can proceed as in the proof of Theorem 3.2 and observe that

∥û2 − P0u2∥e ≤ µ∥(u2 − P0u2)
′∥0,

from which, since µ∥û2 − P0u2∥0 ≤ ∥û2 − P0u2∥e, we get

∥(û2 − P0u2)
′∥e ≤ C∥(u2 − P0u2)

′∥0.
Hence, using the triangle inequality and the stability result for P0 in
Lemma 3.3, we can conclude that

µ
1
2∥(u2 − û2)

′∥0 ≤ Cµ
1
2∥(u2 − P0u2)

′∥0 ≤ Cµ
1
2∥(u2 − uI

2)
′∥0.

Then, from (9), we finally obtain

µ
1
2∥(u2 − û2)

′∥0 ≤ Ch.

Now, we want to obtain an error estimate for ε∥(u1 − û1)
′∥20.

For any vh ∈ Vh, we have that

(u1, vh) =

(
û1 +

a12
a11

(û2 − u2), vh

)
=

(
û1 +

a12
a11

(û2 − P0(u2)), vh

)
.
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As a consequence of the uniqueness of the L2 projection P0 we can
affirm that

û1 +
a12
a11

(û2 − P0(u2)) = P0(u1),

i.e.,

û1 = P0(u1)−
a12
a11

(û2 − P0(u2)).

Thus, from Lemmas 2.1 and 3.2, we can assure that

∥(u1 − û1)
′∥0 =

∥∥∥∥(u1 − P0(u1) +
a12
a11

(û2 − P0(u2))

)′∥∥∥∥
0

≤ ∥(u1 − P0(u1))
′∥0 + C∥(û2 − u2)

′∥0 + ∥(u2 − P0(u2))
′∥0

≤ Cε−
1
2h+ Cµ− 1

2h.

Therefore, ε
1
2∥(û1−u1)

′∥0 ≤ Ch. Now, from the definition (26) we can
write

ε2∥(û1 − uh,1)
′∥20 ≤ B(û− uh, û− uh) = B(û− u, û− uh)

= ε2
∫
I

(û1 − uh,1)
′(û1 − u1)

′ ≤ ε2∥(û1 − uh,1)
′∥0∥(û1 − u1)

′∥0.

Therefore,

∥(û1 − uh,1)
′∥0 ≤ ∥(û1 − u1)

′∥0 ≤ ε−
1
2Ch,

and, as a consequence,

(28) ε
1
2∥(u1 − uh,1)

′∥0 ≤ ε
1
2 {∥(û1 − u1)

′∥0 + ∥(û1 − u1,h)
′∥0} ≤ Ch.

On the other hand, since

µ2∥(û2 − uh,2)
′∥20 ≤ B(û− uh, û− uh) = B(û− u, û− uh)

= ε2
∫
I

(û1 − uh,1)
′(û1 − u1)

′ ≤ ε2∥(û1 − uh,1)
′∥0∥(û1 − u1)

′∥0,

we get
µ2∥(û2 − uh,2)

′∥20 ≤ ε2Cε−1h2 = Cεh2,

and so,

µ∥(û2 − uh,2)
′∥20 ≤ C

ε

µ
h2 ≤ Ch2.

Consequently,

(29) µ∥(u2 − uh,2)
′∥20 ≤ µ∥(u2 − û2)

′∥20 + µ∥(û2 − uh,2)
′∥20 ≤ Ch2.

On the other hand, from Lemma 3.1 and Lemma 3.2, it is clear that

(30) ∥u− u0∥0 ≤ ∥u− uh∥e ≤ ∥u− Πu∥e ≤ Ch.
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So, as an immediate consequence of estimations (28), (29) and (30),
we obtain the following main result.

Theorem 4.2. Let u = (u1, u2) be the solution of the system (1) and
let uh = (uh,1, uh,2) be its corresponding finite element approximation
on Vh. Assuming that the ε-graded mesh satisfies the condition (13),
we have that there exists a constant C, independent of ε and µ, such
that

|||u− uh||| ≤ Ch.

Remark 4.2. We note that the case of more than two equations,
with constant coefficients and different perturbation parameters, can
be treated with similar arguments. Indeed, in the case of three equa-
tions, with perturbation parameters ε1 ≤ ε2 ≤ ε3 and a positive definite
matrix A ∈ R3×3, the projection û = (û1, û2, û3) ∈ Vh can be defined
as in (26) by asking

(a11û1(x) + a12û2(x) +a13û3(x), v1) =

(a11u1(x) + a12u2(x) + a13u3(x), v1)

(a21û1(x) + a22û2(x) +a23û3(x), v2) =

(a21u1(x) + a22u2(x) + a23u3(x), v2)

ε23(û
′
3, v

′
3)+ (a31û1(x) + a32û2(x) + a33û3(x), v3) =

ε23(u
′
3, v

′
3) + (a31u1(x) + a32u2(x) + a33u3(x), v3)

for all v1, v2, v3 ∈ Vh.

5. Numerical examples

In this Section, we present numerical examples that confirm the the-
oretical results of Theorems 4.1 and 4.2.

Problems are approximated using graded meshes as specified in Sub-
section 3.1 for the corresponding parameters ε and h. The errors
eh = |||u− uh||| are computed numerically, comparing the approxi-
mated solution uh, for h from 0.32 to 0.01, with the finite element
solution obtained with a mesh ten times finer, i.e. with h = 10−3.
We compute the rates of convergence with respect to h, rh, and with

respect to the number of degrees of freedom, rN , as follows:

rh =
log eh − log eh

2

log 2
, rN = −

log eh − log eh
2

logNh − logNh
2

,

where Nh denotes the number of elements of an ε-graded mesh Th.
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Figure 2. Numerical solutions u1 (left) and u2 (right)
of Example 5.1 for ε = 10−6.

h
ε = 10−6, µ = 10−2 ε = 10−9, µ = 10−3

Nh |||·|||-error rh rN Nh |||·|||-error rh rN
0.32 144 3.5080e-02 - - 216 3.4808e-02 - -
0.16 330 1.9185e-02 0.87 0.73 498 1.9040e-02 0.87 0.72
0.08 684 1.0118e-02 0.92 0.88 1036 1.0043e-02 0.92 0.87
0.04 1376 5.2127e-03 0.96 0.95 2082 5.1746e-03 0.96 0.95
0.02 2742 2.6544e-03 0.97 0.98 4148 2.6351e-03 0.97 0.98
0.01 5456 1.3527e-03 0.97 0.98 8252 1.3429e-03 0.97 0.98

Table 1. Numerical errors for Example 5.1

The computations were implemented in Octave [7]. We remark that
the computation of the integrals involving in the bilinear form B can
be made just using the mesh widths. The linear system was solved
using the backslash “\” command.

5.1. First Example: variable coefficients, ε = µ. In order to con-
firm the estimates given in Theorem 4.1, in this example we consider
the numerical solution of system (1) with variable coefficients given by

(31)
a11(x) = 5(x+ 1)2, a12(x) = −(1 + x)3,

a21(x) = −2 cos
(π
4
x
)
, a22(x) = 5e1−x,

and

f1(x) = f2(x) = 1 on [0, 1].

A graph of the numerical solution obtained for ε = 10−6 is shown
in Figure 2. Table 1 reports the errors in balanced norm and the
numerical rates of convergence obtained for ε = 10−6 and ε = 10−9.
The purpose of Table 2 is to study the robustness of graded meshes
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ε
Column A Column B
|||·|||-error |||·|||-error

1e-01 1.4193e-02 8.1381e-03
1e-02 1.3104e-02 8.6045e-03
1e-03 1.2767e-02 9.0517e-03
1e-04 1.2616e-02 9.5381e-03
1e-05 1.2528e-02 1.0051e-02
1e-06 1.2471e-02 1.0591e-02
1e-07 1.2431e-02 1.1158e-02
1e-08 1.2401e-02 1.1753e-02
1e-09 1.2378e-02 1.2378e-02

Table 2. Comparison of estimated errors in balanced
norm, for Example 5.1, for different values of ε. Column
A: graded meshes for particular ε and h = 0.1 are used in
each case. Column B: a single graded mesh for ε = 10−9

and h = 0.1 is used for all cases

in two aspects. Firstly, the parameter h = 0.1 is fixed while ε varies
between 10−9 and 10−1. Solution are computed using each ε-graded
mesh with h = 0.1. We see in Column A that the estimated numerical
errors in balanced norm remain in a stable range. Secondly, a single
ε-graded mesh, designed for fixed parameters ε = 10−9 and h = 0.1,
is used to compute the solution for problems with different values of
the parameter ε. We see in Column B that the numerical errors also
remain almost unchanged near 0.01.

5.2. Second Example: constant coefficients, ε ̸= µ. In order to
confirm the results of Theorem 4.2 we consider the following coupled
reaction–diffusion problem with constant coefficients, taken from [14,
17]:

(32)


−ε2u′′

1(x) + 2u1(x)− u2(x) = 1 in I := (0, 1)

−µ2u′′
2(x)− u1(x) + 2u2(x) = 1

u1(0) = u1(1) = u2(0) = u2(1) = 0.

Figure 5.1 shows the graphs of the numerical solutions u1 and u2 which
matches with those presented in [17]. One can observe the structure of
the boundary layers when different parameters ε and µ are considered.
In Table 3 we show the numerical results for the approximation of

problem (32) for the cases ε = 10−6, µ = 10−2 and ε = 10−9, µ = 10−3.
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Figure 3. Numerical solution of Example 5.2 with ε =
10−6 and µ = 10−2

h
ε = 10−6, µ = 10−2 ε = 10−9, µ = 10−3

Nh |||·|||-error rh rN Nh |||·|||-error rh rN
0.32 144 9.0274e-02 - - 216 9.0090e-02 - -
0.16 330 4.8701e-02 0.89 0.74 498 4.8628e-02 0.89 0.74
0.08 684 2.5449e-02 0.94 0.89 1036 2.5421e-02 0.94 0.89
0.04 1376 1.3041e-02 0.96 0.96 2082 1.3030e-02 0.96 0.96
0.02 2742 6.6214e-03 0.98 0.98 4148 6.6165e-03 0.98 0.98
0.01 5456 3.3691e-03 0.98 0.98 8252 3.3669e-03 0.97 0.98

Table 3. Numerical errors and rates of convergence in
balanced norms for Example 5.2

Table 4 shows the numerical errors obtained for the same problem
when ε = 10−9 and µ varies between 10−9 and 10−1. Since ε is fixed,
in all cases, the same ε-graded mesh is used, with h = 0.1. We can see
that errors remain almost unchanged for all values of µ.

5.3. Third Example: Variable coefficients, ε ̸= µ. As a possible
line for further research, we deal here with an example which is not
covered by the theory of this manuscript. We consider a system with
the same matrix of Example 5.1, but with different parameters ε and µ.

We see that the two cases considered in Table 5 show the same orders
of convergence of those given in Theorems 4.1 and 4.2.

6. Conclusions

We have considered the convergence, in a balanced norm, of the lin-
ear finite element approximation with graded meshes of a singularly
perturbed system of two ordinary differential reaction–diffusion equa-
tions. First we have analyzed the case of variable coefficients with the
same parameter in both equations and then, we have considered the
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µ |||·|||-error
1e-01 2.9421e-02
1e-02 3.0373e-02
1e-03 3.1409e-02
1e-04 3.2519e-02
1e-05 3.3707e-02
1e-06 3.4977e-02
1e-07 3.6364e-02
1e-08 3.8466e-02
1e-09 4.4002e-02

Table 4. Numerical errors for Example 5.2 with ε =
10−9 and different values of µ. The graded mesh used is
the one designed for ε = 10−9 and h = 0.1

h
ε = 10−6, µ = 10−2 ε = 10−9, µ = 10−3

Nh |||·|||-error rh rN Nh |||·|||-error rh rN
0.32 144 2.7992e-02 - - 216 2.7737e-02 - -
0.16 330 1.5173e-02 0.88 0.74 498 1.5037e-02 0.88 0.73
0.08 684 7.9543e-03 0.93 0.89 1036 7.8838e-03 0.93 0.88
0.04 1376 4.0839e-03 0.96 0.95 2082 4.0480e-03 0.96 0.96
0.02 2742 2.0756e-03 0.98 0.98 4148 2.0575e-03 0.98 0.98
0.01 5456 1.0567e-03 0.97 0.98 8252 1.0475e-03 0.97 0.98

Table 5. Numerical errors for Example 5.3

case of different small parameters multiplying the second-order deriva-
tives but assuming constant coefficients in both equations. In both
cases, almost optimal error estimates with respect to the number of
degrees of freedom were proved when appropriate graded meshes are
used. Those estimates are robust with respect to the singular pertur-
bation. The goal of our approach is that the proposed graded meshes
depend only on the smallest parameter of the system. We also explain
that our techniques can be easily extended to systems of more than
two equations.

Key tools to obtain our results are H1 stability estimates for distinct
L2-projections on the finite element space which hold on the (non-
quasiuniform) graded meshes. We also include an example of variable
coefficients and different perturbation parameters, even though it is
not covered by our theory (the projections defined in (26) can not be
applied). This issue is subject of future research.
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On the other hand, a preliminary analysis shows that graded meshes
for higher order approximations require too small elements near the
boundary, and therefore the design of practical graded meshes still
need further investigation.
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