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Abstract. In this work we analyze the existence and regularity of the solution of a nonho-
mogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external
cusp.

In order to prove that there exists a unique solution in H
1(Ω) using the Lax-Milgram theorem

we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem
for H

1(Ω) does not apply, in fact the restriction of H
1(Ω) functions is not necessarily in L

2(∂Ω).
So, we introduce a trace theorem by using weighted Sobolev norms in Ω.

Under appropriate assumptions we prove that the solution of our problem is in H
2(Ω) and

we obtain an a priori estimate for the second derivatives of the solution.

1. introduction

This paper deals with an elliptic equation in a domain with an external cusp. Since this kind
of domains are not Lipschitz, the standard arguments to prove existence can not be applied when
non homogeneous Neumann boundary conditions are imposed on some part of the boundary.
Indeed, to apply the Lax-Milgram theorem in this case one needs to use some trace theorem
for Sobolev spaces. However, simple examples show that, for some cusps, there are functions
in H1(Ω) such that their restriction to the boundary are not in L2(∂Ω). Therefore the classic
trace theorems for Lipschitz domains are not valid in this case.

We consider the following model problem: let Ω be the plane domain defined by

Ω = {(x, y) : 0 < x < 1, 0 < y < ϕ(x)},
with ϕ ∈ C2(0, 1), ϕ,ϕ′, ϕ′′ > 0 on (0, 1), ϕ(0) = ϕ′(0) = 0 (a typical example is ϕ(x) = xα,
α > 1), and Γ = Γ1 ∪ Γ2 ∪ Γ3 the boundary of Ω, where

Γ1 = {0 ≤ x ≤ 1, y = 0}, Γ2 = {x = 1, 0 ≤ y ≤ 1} and Γ3 = {0 ≤ x ≤ 1, y = ϕ(x)}
(see Figure 1).

We seek u such that






























−∆u = f , in Ω

∂u

∂ν
= 0 , on Γ1

u = 0 , on Γ2

∂u

∂ν
= g , on Γ3

(1.1)

where ν denotes the outside normal to Ω.
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Figure 1. cuspidal domain

In [6] the authors characterize the traces of the Sobolev spaces W 1,p(Ω), 1 ≤ p < ∞ for
domains of the class considered here by using some weighted norm on the boundary. Existence
of solutions of (1.1) can be derived from their results under certain hypothesis on the data.
In order to obtain existence results for more general data we present a different kind of trace
results by introducing a weighted Sobolev space in Ω such that the restriction to the boundary
of functions in that space are in Lp(Γ).

Once the existence of a solution is known, the question about its regularity arises naturally.
For the Poisson problem with homogeneous boundary conditions on cuspidal domains it is known
that, if the right hand side of the equation is in L2(Ω), then the solution belongs to H2(Ω) (see
[2, 5]). We show that the technique introduced by Khelif in [5] can be extended to treat non
homogeneous Neumann type boundary conditions. In this way we prove that the solution of our
model problem belongs to the space H2(Ω).

2. Existence and uniqueness of solution

In this section we prove some trace results and apply them to obtain existence and uniqueness
of solution of our model problem using the Lax-Milgram theorem.

Let V = {v ∈ H1(Ω) : v|Γ2 = 0}. The variational problem associated with (1.1) is given by:
Find u ∈ V such that

a(u, v) = L1(v) + L2(v) ∀v ∈ V,

where

a(u, v) =

∫

Ω
∇u · ∇v , L1(v) =

∫

Ω
fv and L2(v) =

∫

Γ3

gv.

Using the Poincaré inequality, it is easy to see that the bilinear form a(·, ·) is coercive and
continuous on V . Therefore, in order to prove that there exists a unique solution in V using
the Lax-Milgram theorem, we need to impose conditions on the data f and g which guarantee
that the linear operators L1 and L2 are continuous on V . For the continuity of L1 it is enough
to assume that f ∈ L2(Ω). On the other hand the continuity of L2 when g ∈ L2(Γ3), in the
case of a Lipschitz domain, is proved by using well known results on restrictions of H1(Ω) to the
boundary. However, since our domain is not Lipschitz, the standard trace theorem for H 1(Ω)
does not apply, in fact, the following example shows that for some cusps the restriction of H 1(Ω)
functions is not necessarily in L2(Γ).

Example 2.1. Consider ϕ(x) = xα, α > 1, and the function u(x, y) = x−γ. Then, an easy
computation shows that u ∈ H1(Ω) iff γ < α−1

2 . However, u ∈ L2(Γ) iff γ < 1
2 . So, for α > 2,
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taking 1
2 ≤ γ < α−1

2 , we have examples of functions which are in H1(Ω) and such that their

restrictions to the boundary are not in L2(Γ).

In [6], Mazya, Netrusov and Poborchi, characterize the space of traces of W 1,p(Ω), for non
Lipschitz domains Ω of the type considered here, by using some weighted norms on the boundary.
In particular, it follows from their results that there exists a constant C such that

‖uϕ 1
2 ‖L2(Γ) ≤ C‖u‖H1(Ω). (2.2)

Indeed, the left hand side agrees with the first term in the norm ‖. ‖TW 1
p (Ω), with p = 2, intro-

duced in [6, page 108] which, as proved in that paper, is bounded by the H1 norm.
The inequality (2.2) can be used to prove the continuity of L2 under the assumption that

gϕ− 1
2 ∈ L2(Γ3), in fact we have

|L2(u)| =

∣

∣

∣

∣

∫

Γ3

gϕ− 1
2 uϕ

1
2

∣

∣

∣

∣

≤ ‖gϕ− 1
2 ‖L2(Γ3)‖uϕ

1
2 ‖L2(Γ3) ≤ C‖gϕ− 1

2 ‖L2(Γ3)‖u‖H1(Ω).

Let us observe that assuming continuity of g the condition gϕ− 1
2 ∈ L2(Γ3) implies that g has

to vanish at the origin, which does not seem to be a natural condition for the existence of a
solution. Therefore, our goal is to relax the assumption on g by introducing a trace result of
a different nature of those in [6]. More precisely, we want to give sufficient conditions to have
traces in Lp of the boundary. In order to do that we introduce the weighted Sobolev space
W 1,p

ϕ (Ω) as the closure of C∞(Ω) in the norm

‖u‖p

W 1,p
ϕ (Ω)

:= ‖uϕ− 1
p ‖p

Lp(Ω) + ‖∇uϕ( p−1
p

) ‖p
Lp(Ω).

In what follows we use the letter C to denote a generic constant which depends only on p.

Lemma 2.1. There exists a constant C such that for any u ∈W 1,p
ϕ (Ω) with 1 ≤ p <∞,

‖u‖Lp(Γ) ≤ C(‖uϕ− 1
p ‖Lp(Ω) + ‖∇uϕ( p−1

p
) ‖Lp(Ω)).

Proof. We will use the following change of variables which is a generalization of that introduced
by Grisvard [3] for power type cusps. Let ξ = 1

ϕ′(x) and η = y
ϕ(x) then, Ω is transformed in Ω̃

given by

Ω̃ = {(ξ, η) : ξ >
1

ϕ′(1)
, 0 < η < 1},

see Figure 2.

We denote by Γ̃1 = {(ξ, η) : ξ ≥ 1
ϕ′(1) , η = 0}, Γ̃2 = {(ξ, η) : ξ = 1

ϕ′(1) , 0 ≤ η ≤ 1} and

Γ̃3 = {(ξ, η) : ξ ≥ 1
ϕ′(1) , η = 1}.

First we give the proof for the case p = 1. Writing v(ξ, η) = u(x, y) we have

∫

Γ3

|u| =

∫ 1

0
|u(x, ϕ(x))|

√

1 + ϕ′(x)2dx

≤ C

∫ 1

0
|u(x, ϕ(x))|dx = C

∫ ∞

1
ϕ′(1)

|v(ξ, 1)|J(ξ)dξ,

(2.3)

where

J(ξ) =
ϕ′(x)2

ϕ′′(x)
. (2.4)
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Ω Ω̃

Figure 2

Applying the following standard trace inequality in Ω̃,

‖w‖L1(Γ̃3) ≤ C

(

‖w‖L1(Ω̃) +

∥

∥

∥

∥

∂w

∂η

∥

∥

∥

∥

L1(Ω̃)

)

,

to the function w(ξ, η) = v(ξ, η)J(ξ), we get

∫ ∞

1
ϕ′(1)

|v(ξ, 1)|J(ξ)dξ ≤ C

(
∫

Ω̃
|v(ξ, η)|J(ξ)dξdη +

∫

Ω̃

∣

∣

∣

∣

∂v(ξ, η)

∂η

∣

∣

∣

∣

J(ξ)dξdη

)

and therefore, changing variables and using (2.3) and (2.4), we have
∫

Γ3

|u| ≤ C

(
∫

Ω
|u|ϕ(x)−1dxdy +

∫

Ω

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

dxdy

)

.

Applying the same argument on Γ1 and a standard trace theorem on Γ2, we obtain

‖u‖L1(Γ) ≤ C
(

‖uϕ−1‖L1(Ω) + ‖∇u‖L1(Ω)

)

(2.5)

concluding the proof for the case p = 1.
Now, for any p such that 1 < p <∞, we use (2.5) for up to obtain

∫

Γ
|u|p ≤ C

(
∫

Ω
|u|pϕ−1 + p

∫

Ω
|u|p−1|∇u|

)

= C

(
∫

Ω
|u|pϕ−1 + p

∫

Ω
|u|p−1ϕ

− 1
q |∇u|ϕ

1
q

)

where q = p
p−1 , and therefore, the proof concludes by using the inequality ab ≤ 1

qa
q + 1

pb
p in the

last term on the right hand side. �

Remark 2.1. With an argument analogous to that used in the previous lemma one can prove
the following result, which is stronger than (2.2),

‖uϕ
1
p ‖Lp(Γ) ≤ C(‖u‖Lp(Ω) + ‖∇uϕ ‖Lp(Ω)).
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Existence results for more general data g can be obtained from the previous lemma and
embedding theorems. During the rest of this section we will restrict ourselves to the case of
power type cusps, for which embedding theorems are well known.

Let ϕ(x) = xα with α > 1. In the next theorem we prove that the restriction of H1(Ω)
functions are in Lp(Γ) under appropriate assumptions on the values of α and p. In the proof we
will make use of the inclusion

H1(Ω) ⊂ Lr(Ω) for 2 ≤ r ≤ 2(α+ 1)

α− 1
(2.6)

which is a particular case of the results given in [1].

Theorem 2.1. Let u ∈ H1(Ω) and 1 ≤ p ≤ 2. If α < 1 + 2
p then u ∈ Lp(Γ) and

‖u‖Lp(Γ) ≤ C‖u‖H1(Ω). (2.7)

Proof. From Lemma 2.1 we know that

‖u‖Lp(Γ) ≤ C(‖ux−
α
p ‖Lp(Ω) + ‖∇uxα( p−1

p
) ‖Lp(Ω))

≤ C(‖ux−
α
p ‖Lp(Ω) + ‖∇u‖Lp(Ω)).

(2.8)

To bound the first term on the right hand side of (2.8) we use the Hölder inequality with an
exponent q to be chosen below. Then,

∫

Ω
|u|px−α ≤

(
∫

Ω
|u|pq

)
1
q
(
∫

Ω
x
−α q

q−1

)
q−1

q

.

From (2.6), if 2
p ≤ q ≤ 2(1+α)

(α−1)p we have

(
∫

Ω
|u|pq

)
1
q

≤ C‖u‖p
H1(Ω)

.

On the other hand, (
∫

Ω x
−α q

q−1 )
q−1

q is bounded if q > 1 +α. So, if α < 1 + 2
p we can take q such

that 1 + α < q ≤ 2(1+α)
(α−1)p and we obtain (2.7). �

Remark 2.2. In particular, it follows from the previous theorem that for α < 2 the functions
in H1(Ω) have traces in L2(Γ), while from Example 2.1 we know that this is not true for α > 2.
Therefore our result is almost optimal.

Now we can give an existence result for problem (1.1) under appropriate assumptions on g
and α.

Theorem 2.2. Let 1 ≤ p ≤ 2, g ∈ Lq(Γ3) with q = p
p−1 , and f ∈ L2(Ω). If α < 1 + 2

p then

there exists a unique solution u ∈ V of problem (1.1).

Proof. Since the bilinear form a(·, ·) is coercive and continuous on V , the existence of a unique
solution will be a consequence of the Lax-Milgram theorem if we show that the linear functional
L := L1 + L2 is continuous on V .

Since f ∈ L2(Ω), L1 is continuous and therefore it only remains to prove the continuity of L2.
From Theorem 2.1 we know that ‖u‖Lp(Γ) ≤ C‖u‖H1(Ω) and so,

|L2(u)| =

∣

∣

∣

∣

∫

Γ3

gu

∣

∣

∣

∣

≤ ‖g‖Lq(Γ3)‖u‖Lp(Γ3) ≤ C‖g‖Lq(Γ3)‖u‖H1(Ω)
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and the theorem is proved. �

3. Regularity of the solution

In this section we analyze the regularity of the solution u of problem (1.1). Under appropriate
conditions on g we prove, in the next theorem, that u ∈ H2(Ω). In order to obtain this result we
will apply the method introduced by Khelif [2, 5] which is based in approximating the domain
by a sequence of Lipschitz domains.

Theorem 3.1. Let f ∈ L2(Ω), and g such that, if h(t) := g(t, ϕ(t)), hϕ− 1
2 ∈ L2(0, 1) and

h′(ϕ′′)−
1
2 ∈ L2(0, 1). Assume also that

∥

∥

∥

ϕ′′ϕ
(ϕ′)2

∥

∥

∥

L∞(0,1)
< 1. Then the problem (1.1) has a unique

solution u belonging to H2(Ω), and there exists a constant C such that

‖u‖H2(Ω) ≤ C
{

‖f‖L2(Ω) + ‖hϕ− 1
2 ‖L2(0,1) + ‖h′(ϕ′′)−

1
2 ‖L2(0,1)

}

. (3.9)

Proof. The existence of a unique solution u ∈ H1(Ω) follows from the results of Section 2. Then
it only remains to show that u ∈ H2(Ω).

Let pn = 1/n and define
Ωn = {(x, y) ∈ Ω : pn < x < 1},
Γn

1 = {(x, 0) : pn ≤ x ≤ 1},
Γ2 = {(1, y) : 0 ≤ y ≤ 1},
Γn

3 = {(x, ϕ(x)) : pn ≤ x ≤ 1},
and,

Γn
4 = {(pn, y) : 0 ≤ y ≤ ϕ(pn)},

see Figure 3.

 Ω
n

 Γn
1

 Γn
3

 Γ
2

 Γn
4

Figure 3

We consider the following problem in Ωn,































−4un = f, in Ωn

un = 0, on Γ2

∂un

∂ν
= g, on Γn

3

∂un

∂ν
= 0, on Γn

1 ∪ Γn
4

(3.10)

In what follows the letter C will denote a constant which may depend on ϕ.
Observe first that the solution un satisfies
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‖un‖H1(Ωn) ≤ C
{

‖f‖L2(Ω) + ‖hϕ− 1
2 ‖L2(0,1)

}

(3.11)

with C independent of n. Indeed, this estimate follows by standard arguments using a trace
theorem as that given in Remark 2.1 applied on Ωn. Note that the argument of Lemma 2.1 can
be applied to Ωn providing a constant independent of n.

It is known that the solution of problem (3.10) belongs to H2+ε(Ωn) [2, 4], for some positive ε,
in particular its first derivatives are continuous. Our goal is to obtain an estimate for ‖un‖H2(Ωn)

valid uniformly in n. Using a method introduced by Khelif [2],[5] we will show that

‖un‖H2(Ωn) ≤ C
{

‖f‖L2(Ω) + ‖hϕ− 1
2 ‖L2(0,1) + ‖h′(ϕ′′)−

1
2 ‖L2(0,1)

}

(3.12)

with C independent of n.
For any ρ and ψ in H1(Ωn) we have

∫

Ωn

ρxψy =

∫

Ωn

ρyψx +

∫

∂Ωn

ψ
∂ρ

∂τ

where τ is the unit tangent vector oriented clockwise. Note that the right hand side has to be
understood in a weak sense, i.e., ∂ρ

∂τ ∈ H−1/2(∂Ωn). Taking

ρ =
∂un

∂x
and ψ =

∂un

∂y
in the equation given above we obtain

∫

Ωn

f2 =

∫

Ωn

(∆un)2 =

∫

Ωn

(ρx + ψy)
2

=

∫

Ωn

ρ2
x + 2

∫

Ωn

ρxψy +

∫

Ωn

ψ2
y

=

∫

Ωn

ρ2
x + 2

∫

Ωn

ρyψx +

∫

Ωn

ψ2
y + 2

∫

∂Ωn

ψ
∂ρ

∂τ

= |un|2H2(Ωn) + 2

∫

∂Ωn

ψ
∂ρ

∂τ
,

(3.13)

where |un|H2(Ωn) denotes the seminorm of un in H2(Ωn).
To simplify notation we introduce the one variable functions

v(t) :=
∂un

∂x
(t, ϕ(t)) and w(t) :=

∂un

∂y
(t, ϕ(t)).

Then, the boundary conditions imply


























∂un

∂y
= 0 on Γn

1 ∪ Γ2

w = v ϕ′ + h
√

1 + (ϕ′)2 on Γn
3

∂un

∂x
= 0 on Γn

4 .

Therefore, (3.13) becomes

|un|2H2(Ωn) =

∫

Ωn

f2 − 2

∫ 1

pn

w(t)v′(t)dt, (3.14)

and so, we have to bound the last term on the right hand side.
From the boundary condition on Γn

3 we have,
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∫ 1

pn

w(t)v′(t) dt =

∫ 1

pn

w(t)

(

w(t)

ϕ′(t)

)′

dt−
∫ 1

pn

w(t)

(

h(t)
√

1 + (ϕ′(t))2

ϕ′(t)

)′

dt = I + II. (3.15)

For the first term we have

I =

∫ 1

pn

w(t)w′(t)
1

ϕ′(t)
dt−

∫ 1

pn

w(t)2
ϕ′′(t)

ϕ′(t)2
dt

=
1

2

∫ 1

pn

(w(t)2)′
1

ϕ′(t)
dt−

∫ 1

pn

w(t)2
ϕ′′(t)

ϕ′(t)2
dt.

Now, since ∂un

∂y is continuous, it follows from the boundary condition on Γ2 that w(1) = 0.

Therefore, integrating by parts, we obtain for the first term in the right hand side of the last
equation,

1

2

∫ 1

pn

(w(t)2)′
1

ϕ′(t)
dt = −1

2
w(pn)2

1

ϕ′(pn)
+

1

2

∫ 1

pn

w(t)2
ϕ′′(t)

ϕ′(t)2
dt

and then,

I = −1

2
w(pn)2

1

ϕ′(pn)
− 1

2

∫ 1

pn

w(t)2
ϕ′′(t)

ϕ′(t)2
dt. (3.16)

Using now the boundary condition on Γn
4 and the fact that ∂un

∂x is continuous, it follows that
v(pn) = 0 and so, from the boundary condition on Γn

3 we obtain

w(pn) = h(pn)
√

1 + ϕ′(pn)2.

Therefore, replacing in (3.16) we have

I = −1

2
h2(pn)

(

1 + ϕ′(pn)2
) 1

ϕ′(pn)
− 1

2

∫ 1

pn

w2(t)
ϕ′′(t)

ϕ′(t)2
dt. (3.17)

To bound the first term on the right hand side we observe that, for any s ∈ (0, 1),

|h(s) − h(0)| =

∣

∣

∣

∣

∫ s

0
h′(t)

∣

∣

∣

∣

≤
∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

L2(0,1)

(
∫ s

0
ϕ′′(t) dt

)
1
2

=
∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

L2(0,1)
ϕ′(s)

1
2 .

In particular h is continuous at 0 and consequently, since hϕ− 1
2 ∈ L2(0, 1), it follows that

h(0) = 0 (recall that 0 < ϕ(t) < t for all t small enough).
Moreover,

h2(pn)

ϕ′(pn)
≤
∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)

and so, we obtain from (3.17),

|I| ≤ C
∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)
+

1

2

∫ 1

pn

w2(t)
ϕ′′(t)

ϕ′(t)2
dt. (3.18)

Let us now estimate the second term on the right hand side of (3.15). A simple computation
shows that

II = −
∫ 1

pn

w(t)h(t)ϕ′′(t)

ϕ′(t)2
√

1 + ϕ′(t)2
dt+

∫ 1

pn

w(t)h′(t)
√

1 + ϕ′(t)2

ϕ′(t)
dt = III + IV.
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Using the arithmetic-geometric inequality ab ≤ 1
2εa

2 + ε
2b

2 valid for all ε > 0, we have

|III| ≤ ε

2

∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt+

1

2ε

∫ 1

pn

h(t)2ϕ′′(t)

ϕ′(t)2 (1 + ϕ′(t)2)
dt

≤ ε

2

∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt+

1

2ε
‖hϕ− 1

2 ‖2
L2(0,1)

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

,

while, on the other hand, we have

|IV | ≤ ε

2

∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt+

1

2ε

∫ 1

pn

h′(t)2(1 + ϕ′(t)2)

ϕ′′(t)
dt

≤ ε

2

∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt+

C

2ε

∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)
.

So

|II| ≤ ε

∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt+

1

2ε
‖hϕ− 1

2 ‖2
L2(0,1)

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

+
C

2ε

∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)
. (3.19)

Therefore, using the estimates (3.18) and (3.19), we obtain from (3.15),

∣

∣

∣

∣

∫ 1

pn

w(t)v′(t)dt

∣

∣

∣

∣

≤
(

1

2
+ ε

)
∫ 1

pn

w(t)2ϕ′′(t)

ϕ′(t)2
dt

+
1

2ε

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

‖hϕ− 1
2 ‖2

L2(0,1) + C

(

1 +
1

2ε

)

∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)
. (3.20)

But, from the boundary condition on Γn
1 we know that ∂un

∂y (t, 0) = 0 and therefore,

w2(t) =

∣

∣

∣

∣

∂un

∂y
(t, ϕ(t))

∣

∣

∣

∣

2

=

(

∫ ϕ(t)

0

∂2un

∂y2
(t, y)dy

)2

≤ ϕ(t)

∫ ϕ(t)

0

∣

∣

∣

∣

∂2un

∂y2
(t, y)

∣

∣

∣

∣

2

dy

and consequently,

∫ 1

pn

w2(t)

ϕ(t)
dt ≤

∥

∥

∥

∥

∂2un

∂y2
(t, y)

∥

∥

∥

∥

2

L2(Ωn)

.

Therefore, replacing in (3.20) we obtain

2

∣

∣

∣

∣

∫ 1

pn

w(t)v′(t)dt

∣

∣

∣

∣

≤ (1 + 2ε)

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

∥

∥

∥

∥

∂2un

∂y2
(t, y)

∥

∥

∥

∥

2

L2(Ωn)

+

+
1

ε

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

‖hϕ− 1
2 ‖2

L2(0,1) + C

(

2 +
1

ε

)

∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)
. (3.21)

Hence, using this estimate in (3.14), we conclude that

|un|2H2(Ωn) ≤ ‖f‖2
L2(Ω) + C

(

2 +
1

ε

){

‖hϕ− 1
2 ‖2

L2(0,1) +
∥

∥

∥
h′(ϕ′′)−

1
2

∥

∥

∥

2

L2(0,1)

}

+ (1 + 2ε)

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

∥

∥

∥

∥

∂2un

∂y2
(t, y)

∥

∥

∥

∥

2

L2(Ωn)

. (3.22)
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where we have used that
∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

< 1.

From this fact, we also observe that ε > 0 may be chosen in such a way that

(1 + 2ε)

∥

∥

∥

∥

ϕ′′ϕ

(ϕ′)2

∥

∥

∥

∥

L∞(0,1)

< 1.

So, recalling now (3.11), we obtain (3.12).
Now, using a standard argument and the Rellich theorem, one can show that there is a

subsequence, that for simplicity we continue calling un, such that, for each Ωk, un is defined on
Ωk for n large enough and converges weakly in H2(Ωk) and strongly in H1(Ωk). Moreover, if we
call u the limit function, it follows from (3.12) and the weak convergence in H2, that u satisfies
the estimate (3.9). So, it remains only to show that u is the solution of (1.1). Therefore we have
to see that

∫

Ω
∇u · ∇v =

∫

Ω
fv +

∫

Γ3

gv ∀ v ∈ V.

It is enough to show that, given v ∈ V ,
∫

Ωk

∇u · ∇v −
∫

Ω
fv −

∫

Γ3

gv −→ 0

when k → ∞. Moreover, by density, we can assume that v ∈W 1,∞(Ω)∩ V . For n ≥ k, we have
∫

Ωk

∇u · ∇v −
∫

Ω
fv −

∫

Γ3

gv

=

∫

Ωk

(∇u−∇un) · ∇v +

∫

Ωk

∇un · ∇v −
∫

Ω
fv −

∫

Γ3

gv

=

∫

Ωk

(∇u−∇un) · ∇v +

∫

Ωn

∇un · ∇v −
∫

Ωn\Ωk

∇un · ∇v −
∫

Ω
fv −

∫

Γ3

gv

=

∫

Ωk

(∇u−∇un) · ∇v −
∫

Ω\Ωn

fv −
∫

Γ3\Γn
3

gv −
∫

Ωn\Ωk

∇un · ∇v (3.23)

where we have used that un is the solution of problem (3.10). But,

∣

∣

∫

Ωn\Ωk

∇un · ∇v
∣

∣ ≤ ‖un‖H1(Ωn)‖v‖W 1,∞(Ω)|Ωn \ Ωk|
1
2

and, since ‖un‖H1(Ωn) are uniformly bounded, the last term on the right hand side of (3.23) can
be made smaller than any positive constant by taking k large enough. Then, the proof concludes
by using that, for k fixed,

∫

Ωk

(∇u−∇un) · ∇v −→ 0

when n→ ∞. �

Observe that the domains with power type cusps, i.e., ϕ(t) = tα, α > 1 are in the class
considered here. In fact,

ϕ′′ϕ

(ϕ′)2
=
α− 1

α
.

In what follows we will show that the hypothesis hϕ− 1
2 ∈ L2(0, 1) assumed in the previous

theorem is not too restrictive and can not be substantially relaxed. With this goal we consider
ϕ(t) = tα, α > 1. In this case, the hypothesis is ht−

α
2 ∈ L2(0, 1) and we will prove that, if
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the solution of problem (1.1) belongs to H2(Ω) then, ht−
α(r−1)

r ∈ Lr(0, 1) for any r < 2. In
particular, if h is continuous at t = 0, it follows that h(0) = 0.

We will show in the next lemma that, for u ∈ H2(Ω), ∂u
∂ν is the restriction to Γ3 of a function

in W 1,r(Ω), for r < 2. Then, the result will follow by using again the results of [6].

Lemma 3.1. Let u ∈ H2(Ω), and consider v = η · ∇u, where η(x, y) := 1√
x2+α2y2

(−αy, x).
Then,

i) v = ∂u
∂ν on Γ3,

ii) v = −∂u
∂ν on Γ1,

iii) v ∈W 1,r(Ω), for r < 2.

Proof. The first two assertions follow immediately from the fact that η(x, y) agrees with the
outward normal on Γ3 and with the inward normal on Γ1.

To prove iii), let us call

a(x, y) :=
αy

√

x2 + α2y2
, and b(x, y) :=

x
√

x2 + α2y2

then, we have

v = −a(x, y)∂u
∂x

+ b(x, y)
∂u

∂y
. (3.24)

Since a and b are bounded functions, we have that v ∈ L2(Ω). Therefore we have to show that
the first derivatives of v are in Lr(Ω) for any r < 2. Now, a straightforward computation yields

∂a

∂y
=

αx2

(x2 + α2y2)
3
2

,
∂b

∂x
=

α2y2

(x2 + α2y2)
3
2

and
∂a

∂x
=

−αxy
(x2 + α2y2)

3
2

,
∂b

∂y
=

−α2xy

(x2 + α2y2)
3
2

.

Integrating these expressions over Ω one can easily check that
∫

Ω

∣

∣

∣

∣

∂a

∂y

∣

∣

∣

∣

s

≤ C

∫ 1

0
xα−sdx,

∫

Ω

∣

∣

∣

∣

∂b

∂x

∣

∣

∣

∣

s

≤ C

∫ 1

0
x2sα−3s+αdx,

∫

Ω

∣

∣

∣

∣

∂a

∂x

∣

∣

∣

∣

s

≤ C

∫ 1

0
xs(α+1)−3s+αdx,

and,
∫

Ω

∣

∣

∣

∣

∂b

∂y

∣

∣

∣

∣

s

≤ C

∫ 1

0
xs(α+1)−3s+αdx.

Therefore,
∂a

∂y
∈ Ls(Ω), if s < α+ 1 (3.25)

∂b

∂x
∈ Ls(Ω),

{

∀s if α ≥ 3
2

s < 1+α
3−2α if α < 3

2

(3.26)

∂b

∂y
,
∂a

∂x
∈ Ls(Ω),

{

∀s if α ≥ 2
s < 1+α

2−α if α < 2
(3.27)
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Now, let w be any of the first derivatives of u. Then, in view of (3.24), in order to prove iii)
it is enough to see that, for r < 2, ∂a

∂xw,
∂a
∂yw,

∂b
∂xw,

∂b
∂yw ∈ Lr(Ω), and this is the aim of the rest

of the proof. We will make use of the imbedding theorem (2.6).

First choose p = 2(α+1)
2(α+1)−r(α−1) . Since w ∈ H1(Ω), it follows from (2.6) that w ∈ Lrq(Ω) where

q = 2(α+1)
r(α−1) is the dual exponent of p. On the other hand, since r < 2, we have rp < α + 1 and

so, we obtain from (3.25) that ∂a
∂y ∈ Lrp(Ω). Then, applying the Hölder inequality we obtain

that ∂a
∂yw ∈ Lr(Ω).

In a similar way, using (3.26), (3.27), and again (2.6), we can prove that ∂a
∂xw,

∂b
∂yw,

∂b
∂xw ∈

L2(Ω) choosing now p = (α+1)
2 and q = α+1

α−1 .

Therefore, taking derivatives in the expression (3.24) we obtain ∂v
∂x ∈ L2(Ω) and ∂v

∂y ∈ Lr(Ω),

for r < 2, concluding the proof. �

In [6], the authors characterizes the traces of W 1,r for general cuspidal domains. Applying
their results for our case it follows in particular that for v ∈W 1,r(Ω) (see [6, page 108]),

∫ 1

0

|v(t, tα) − v(t, 0)|r
tα(r−1)

dt ≤ C‖v‖W 1,r(Ω). (3.28)

From this estimate and our previous lemma we can easily obtain the following corollary.

Corollary 3.1. Let u be the solution of problem (1.1) and h(t) := g(t, tα). If u ∈ H2(Ω) then,

∫ 1

0

|h(t)|r
tα(r−1)

<∞ for any r < 2. (3.29)

Proof. Let v defined from u as in Lemma 3.1. Then, we know from that lemma that v ∈W 1,r(Ω).
Therefore, (3.29) follows immediately from (3.28) and the fact that v = 0 on Γ1. �

Acknowledgments: We thank Julián Fernández Bonder and Noemı́ Wolanski for helpful com-
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