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ANISOTROPIC MESH REFINEMENT IN POLYHEDRAL DOMAINS:

ERROR ESTIMATES WITH DATA IN L2(Ω)

Thomas Apel1, Ariel L. Lombardi2 and Max Winkler1

Abstract. The paper is concerned with the finite element solution of the Poisson equation with
homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes
from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity
of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear
approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new
interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation
which is not possible for the standard nodal interpolant. These new estimates allow for the extension
of certain error estimates for optimal control problems with elliptic partial differential equations and
for a simpler proof of the discrete compactness property for edge elements of any order on this kind of
finite element meshes.
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Introduction

We consider the homogeneous Dirichlet problem for the Laplace equation,

−∆u = f in Ω, u = 0 on ∂Ω, (1)

where Ω is a polyhedral domain. Note that we could consider a more general elliptic equation of second
order. But by a linear change of the independent variables the main part of the differential operator could
be transformed to the Laplace operator in another polyhedral domain such that it is sufficient to consider the
Laplace operator here.

The aim of the paper is to prove the discretization error estimate

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω) (2)

for the finite element solution uh ∈ Vh which is constructed by using piecewise linear and continuous functions
on a family of appropriate finite element meshes Th. Note that we assume here not more than f ∈ L2(Ω) such

Keywords and phrases: elliptic boundary value problem, edge and vertex singularities, finite element method, anisotropic mesh

grading, optimal control problem, discrete compactness property

1 Institut für Mathematik und Bauinformatik, Universität der Bundeswehr München, Germany; e-mail: thomas.apel@unibw.de

& max.winkler@unibw.de
2 Departamento de Matemática, Universidad de Buenos Aires, and Instituto de Ciencias, Universidad Nacional de General

Sarmiento. Member of CONICET Argentina; e-mail: aldoc7@dm.uba.ar c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

that the L2-error estimate
‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω) (3)

follows by the Aubin–Nitsche method immediately. The generic constant C may have different values on each
occurrence.

If the solution of the boundary value problem (1) was in H2(Ω) then the finite element meshes could be
chosen quasi-uniform, and the error estimates (2) and (3) would be standard. However, if the domain Ω is
non-convex, the solution will in general contain vertex and edge singularities, that means u 6∈ H2(Ω). In this
case the convergence order is reduced in comparison with (2) and (3) when quasi-uniform meshes are used. As
a remedy, we focus here on a priori anisotropic mesh grading techniques as they were investigated by Apel and
Nicaise in [4]. In comparison with isotropic local mesh refinement, the use of anisotropic elements avoids an
unnecessary refinement along the edges.

The estimate (2) is in general proven by using the Céa lemma (or the best approximation property of the
finite element method),

‖u− uh‖H1(Ω) ≤ C inf
vh∈Vh

‖u− vh‖H1(Ω), (4)

and by proving an interpolation error estimate as an upper bound for the right-hand side of (4). The particular
difficulty is that when the Lagrange interpolant is used together with anisotropic mesh grading, then the local
interpolation error estimate

|u− Ihu|W 1,p(T ) ≤ hT |u|W 2,p(T ) (5)

does not hold for p = 2 but only for p > 2, see [2]. Hence the classical proof of a finite element error estimate
via

‖u− uh‖H1(Ω) ≤ C‖u− Ihu‖H1(Ω) ≤ C
(∑
T∈Th

hT |u|2H2(T )

)1/2

does not work. This problem was overcome by Apel and Nicaise, [4], by using (5) and related estimates in
weighted spaces, as well as the Hölder inequality for the prize that f ∈ Lp(Ω) with p > 2 has to be assumed in
problem (1). Hence estimate (2) cannot be proved in this way.

For prismatic domains and tensor product type meshes the problem was overcome in [1, 6] by proving local
estimates for a certain quasi-interpolation operator. This work cannot be easily extended to general polyhedral
domains since the orthogonality of certain edges of the elements was used there. The aim of the current paper
is to construct a quasi-interpolation operator Dh such that an error estimate like

‖u−Dhu‖H1(Ω) ≤ Ch‖f‖L2(Ω) (6)

can be proved for the anisotropic meshes introduced in [4].
Quasi-interpolants were introduced by Clément [14]. The idea is to replace nodal values by certain averaged

values such that non-smooth functions can be interpolated. This original idea has been modified by many
authors since then. The contribution by Scott and Zhang [31] was most influential to our work.

The plan of the paper is as follows. In Section 1 we introduce notation, recall regularity results for the solution
u of (1) and describe the finite element discretization. The main results are proved in Section 2. The paper
continues with numerical results in Section 3 and ends with two sections where we describe applications which
motivated us to improve the approximation result from ‖u−uh‖H1(Ω) ≤ Ch‖f‖Lp(Ω), p > 2, to ‖u−uh‖H1(Ω) ≤
Ch‖f‖L2(Ω). The first one is a discretization of a distributed optimal control problem with (1) as the state
equation. The second application consists in a simpler proof of the discrete compactness property for edge
elements of any order on this kind of finite element meshes.

We finish this introduction by commenting on related work. The idea to treat singularities due to a non-
smooth boundary by using graded finite element meshes is old. The two-dimensional case was investigated by
Oganesyan and Rukhovets [26], Babuška [9], Raugel [28], and Schatz and Wahlbin [29]. In three dimensions
we can distinguish isotropic mesh grading, see the papers by Apel and Heinrich [3] and Apel, Sändig, and
Whiteman [5], and anisotropic mesh grading, see the already mentioned papers [1, 2, 6] for the special case of
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prismatic domains, and [4] for general polyhedral domains. This work has been extended by Băcuţă, Nistor, and
Zikatanov [12] to higher order finite element approximations where naturally higher regularity of the right-hand
side f has to be assumed. Boundary element methods with anisotropic, graded meshes have been considered by
von Petersdorff and Stephan [27]. The main alternative to mesh grading is augmenting the finite element space
with singular functions, see for example Strang and Fix [33], Blum and Dobrowolski [11], or Assous, Ciarlet Jr.,
and Segré [8] for various variants. It works well in two dimensions where the coefficient in front of the singular
function is constant. In the case of edge singularities this coefficient is a function which can be approximated,
see Beagles and Whiteman [10], or it can be treated by Fourier analysis, see Lubuma and Nicaise [22].

1. Notation, regularity, discretization

It is well known that the solution of the boundary value problem (1) contains edge and vertex singularities
which are characterized by singular exponents. For each edge e, the corresponding leading (smallest) singular
exponent λe is simply defined by λe = π/ωe where ωe is the interior dihedral angle at the edge e. For vertices v of
Ω, the leading singular exponent λv > 0 has to be computed via the eigenvalue problem of the Laplace-Beltrami
operator on the intersection of Ω and the unit sphere centered at v. Note that λe >

1
2 and λv > 0. A vertex v

or an edge e will be called singular if λv <
1
2 or λe < 1, respectively. We exclude the case that 1

2 is a singular
exponent of any vertex. For a detailed discussion of edge and vertex singularities we refer to [16, Sections 2.5
and 2.6].

As in [4] we subdivide the domain Ω into a finite number of disjoint tetrahedral subdomains, subsequently
called macro-elements,

Ω =

L⋃
`=1

Λ`.

We assume that each Λ` contains at most one singular edge and at most one singular vertex. In the case that
Λ` contains both a singular edge and a singular vertex, that vertex is contained in that edge. Note that the
edges of Λ` are considered to have O(1) length. For `1 6= `2, the closures of the macro-elements Λ`1 and Λ`2
may be disjoint or they intersect defining a coupling face, or a coupling edge, or a coupling node.

For the description of the regularity of the solution u of (1), we set λ
(`)
v = λv if the macro-element Λ` contains

the singular vertex v of Ω. If Λ` does not contain any singular vertex we set λ
(`)
v = +∞. Moreover, we set

λ
(`)
e = λe if Λ` contains the singular edge e of Ω, otherwise we set λ

(`)
e = +∞. Furthermore, we define in each

macro-element Λ` a Cartesian coordinate system x(`) = (x
(`)
1 , x

(`)
2 , x

(`)
3 ) such that the singular vertex, if existing,

is located in the origin, and the singular edge, if existing, is contained in the x
(`)
3 -axis. We also introduce by

r(`)(x(`)) :=
(

(x
(`)
1 )2 + (x

(`)
2 )2

)1/2

,

R(`)(x(`)) :=
(

(x
(`)
1 )2 + (x

(`)
2 )2 + (x

(`)
3 )2

)1/2

,

θ(`)(x(`)) :=
r(`)(x(`))

R(`)(x(`))
,

the distance to the x
(`)
3 -axis, the distance to the origin, the angular distance from the x

(`)
3 -axis, respectively.

For k ∈ N and β, δ ∈ R we define the weighted Sobolev space

V k,2β,δ (Λ`) :=
{
v ∈ D′(Λ`) : ‖v‖V k,2β,δ (Λ`)

<∞
}
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where

‖v‖2
V k,2β,δ (Λ`)

:=
∑
|α|≤k

∫
Λ`

∣∣∣Rβ−k+|α|θδ−k+|α|Dαv
∣∣∣2 ,

|v|2
V k,2β,δ (Λ`)

:=
∑
|α|=k

∫
Λ`

∣∣RβθδDαv
∣∣2 .

Here, we have used the standard multi-index notation to describe partial derivatives, and we have omitted the
index (`) in R and θ for simplicity.

Theorem 1.1 (Regularity). The weak solution u of the boundary value problem (1) admits the decomposition

u = ur + us (7)

in Λ`, ` = 1, . . . , L, where ur ∈ H2(Ω) ∩H1
0 (Ω) and

∂us

∂x
(`)
i

∈ V 1,2
β,δ (Λ`), i = 1, 2,

∂us

∂x
(`)
3

∈ V 1,2
β,0 (Λ`),

for any β, δ ≥ 0 satisfying β > 1
2 − λ

(`)
v and δ > 1− λ(`)

e .

Proof. The assertion follows widely from [4, Theorem 2.10] where ur ∈ H2(Λ`) was stated. However, when
tracing through the proof in that reference, one easily confirms also the global H2(Ω)-regularity. �

In [4] an anisotropic mesh refinement strategy for general polyhedra was introduced. The idea is to further
decompose the macro-elements according to one of four possible refinement rules described below. By this
technique we obtain a conforming triangulation Th of Ω, i. e.

Ω =
⋃
T∈Th

T .

We also assume that T ∩Λ` 6= ∅ implies T ⊂ Λ`. The four refinement rules, which depend on grading parameters
µ`, ν` ∈ (0, 1] (see below), are the following:

Type 1 If Λ` does neither contain a singular edge nor a singular vertex then Th|Λ` is assumed to be isotropic
and quasi-uniform with element size h, see Figure 1, left. The grading parameters are taken as µ` = 1
and ν` = 1.

Type 2 If Λ` contains a singular vertex but no singular edges then Th|Λ` is isotropic and has a singular vertex
refinement, i.e., the mesh is graded towards the singular vertex with a grading parameter ν` ∈ (0, 1].
This can be achieved by using a coordinate transformation of the vertices from Type 1, see Figure 1,
the second from the left. In this case we set µ` = 1.

Type 3 If Λ` contains a singular edge but no singular vertex then Th|Λ` is anisotropically graded towards the
singular edge. The grading parameter is µ` ∈ (0, 1]. To this end, we introduce a family P` of planes
transversal to the singular edge and containing the opposite one. These planes split the macro element
into strips and contain all nodes. In the planes the position of the nodes is achieved by applying a
coordinate transformation to a uniform triangulation, see Figure 1, the second from the right. We take
ν` = 1.

Type 4 If Λ` contains both a singular vertex and a singular edge then Th|Λ` is graded towards the singular edge
with grading parameter µ` ∈ (0, 1] and towards the singular vertex with grading parameter ν` ∈ (0, 1],
see Figure 1, right. The mesh is topologically equivalent to the mesh of Type 3 but the planes of P` do
not divide the singular edge equidistantly but with a grading towards the singular vertex.
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Figure 1. Macro-elements of Type 1, 2, 3 and 4

We point out that anisotropic elements can appear only in Type 3 and Type 4, for which Th contains needle
elements near the singular edge and flat elements near the opposite one, see Figure 1. We further observe that
if Λ` is of Type 3 or Type 4, the elements in Th|Λ` do not intersect any plane of P`.

For each element T we introduce its lengths h1,T , h2,T , h3,T and hT as follows. Let hT be the diameter of T .
If T ⊂ Λ` with Λ` of Type 1 or Type 2, then h1,T = h2,T = h3,T = hT . If T ⊂ Λ` with Λ` of Type 3 or Type 4
then h3,T is the length of the edge e3,T of T parallel to the singular edge, and h1,T = h2,T = 1

2 (|e1,T |+ |e2,T |)
where e1,T and e2,T are the edges of T intersecting e3,T and each one of them is contained in some plane of P`.

For the sake of completeness we briefly describe some conditions on the lengths of the elements, and refer
to [4] for the details. If Λ` contains a singular edge, and if T is an element contained in Λ`, define

rT = inf
{
r(`)(x(`)) : x(`) ∈ Λ`

}
,

and if Λ` contains a singular vertex

RT = inf
{
R(`)(x(`)) : x(`) ∈ Λ`

}
.

Then the length of an arbitrary element T satisfies the following properties. If µ` < 1 we have

hi,T '
{

h1/µ` if rT = 0

hr1−µ`
T if rT > 0

i = 1, 2

h3,T ≤ C

{
h1/ν` if RT ≤ Ch1/ν`

hR1−ν`
T if RT & h1/ν`

h3,T ' h1/ν` if RT = 0,

and if µ` = 1 then for i = 1, 2, 3

hi,T ≤ C

{
h1/ν` if RT ≤ Ch1/ν`

hR1−ν`
T if RT & h1/ν`

hi,T ' h1/ν` if RT = 0.

We also assume that
µ` < 1 ⇒ µ` ≤ ν`.

By classical regularity theory, the solution u of the boundary value problem (1) is continuous, see e.g. [16, page
page 79], such that the Lagrange interpolant uI with respect to the subdivision {Λ`} is well defined. We consider
the decomposition

u = uI + uR. (8)
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Figure 2. Illustration of the edges σn

It follows that the restriction uR|Λ` has the same smoothness properties as u|Λ` , see Theorem 1.1. Furthermore,
uR vanishes in coupling nodes and on singular edges. We construct now an interpolant DhuR ∈ Vh which also
vanishes on these nodes such that uI +DhuR ∈ Vh can be used to estimate the discretization error via (4).

To this end, let N , Nc and Ns be the set of all nodes of Th, the set of coupling nodes, and the set of nodes
which belong to some singular edge, respectively. The terminal points of the singular edges are included in Ns.
For later use, we introduce NT := N ∩ T . The piecewise linear nodal basis on Th is denoted by {φn}n∈N . We
associate (as specified below) with each n ∈ N \ (Nc ∪Ns) an edge σn of some T ∈ Th having n as an endpoint.
Note that u|σn ∈ L2(σn) since u ∈ Hs(Ω) with s > 1. Hence the operator Dh with

Dhu =
∑

n∈N\(Nc∪Ns)

(Πσnu)(n) · φn(x), (9)

is well defined when Πσ : L2(σ)→ P1(σ) is the L2(σ)-projection operator onto the space of polynomials of degree
less than or equal to one. Note that Dhu vanishes on coupling nodes and on singular edges by construction. In
order to impose the boundary conditions and to be able to prove interpolation error estimates we need to select
the edges σn in an appropriate way, compare the illustration in Figure 2. First, we demand that

• for each node n ∈ N \ (Nc ∪Ns), n and σn belong to the same macro-elements.
This requires in particular the following restrictions.
– If n lays on a boundary or coupling face, then σn is contained in that face.
– If n lays on a coupling edge, then σn is contained in that coupling edge.

Note that these requirements made the treatment of the coupling nodes via the interpolation on the initial uI
necessary. Note further that this construction leads to a preservation of the homogeneous Dirichlet boundary
condition.

In order to prove the stability of Dh in the anisotropic refinement regions we also require:

• If n is a vertex of a tetrahedron contained in a macro-element Λ` of Type 3 or Type 4, then σn is an
edge contained on some plane of P`.
• In particular, if T contains a node in Nc\Ns then σn ⊂ T for all other nodes of T .
• If n1 and n2 belong to a macro-element Λ` of Type 3 or Type 4 and have the same orthogonal projection

onto the x
(`)
1 x

(`)
2 -plane, then the same holds for σn1

and σn2
.

In order to estimate the interpolation error we need to define for each T ∈ Th a set ST which should satisfy
the following assumptions.

• The set ST is a union of elements of Th (plus some faces) and in particular T ⊂ ST .
• The set ST is an open connected domain, and as small as possible.
• We have σn ⊂ ST for all nodes n of T .
• If T ⊂ Λ`, then ST ⊂ Λ`.
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Figure 3. Illustration of the cases that have to considered for the interpolation error estimates

• If T ⊂ Λ` with Λ` of Type 3 or Type 4, then ST lays between two successive planes P`. The top and
the bottom face of ST are contained in these two planes and the other faces of ST are parallel to the
singular edge.

The following properties follow from the definitions of the edges σn and the sets ST .

(1) Let T be contained in a macro-element Λ` of Type 3 or Type 4. If T intersects two planes p1 and p2 of
P`, then ST intersects exactly the same planes p1 and p2.

(2) If the node n, n 6∈ Nc∪Ns, belongs to a coupling face, which means that there exist tetrahedra T1 ⊂ Λ`1
and T2 ⊂ Λ`2 with `1 6= `2 and n ∈ NT1

∩NT2
, then ST1

∩ ST2
= ∅ but σn ⊂ ST1 ∩ ST2 .

(3) If T is an isotropic element then all the elements in ST are also isotropic and of size of the same order.

The second point is essential for our proof of the approximation properties. It was the target for which we made
the construction as it is.

2. Error estimates

The aim of this section is to derive error estimates for our discretization. They are based on local interpolation
error estimates for our interpolant Dh. For proving these estimates we have to distinguish several cases, see
also Figure 3 for an illustration:

(1) T is an isotropic element without coupling node, u has full regularity,
(2) T is an isotropic element with coupling node, u has full regularity,
(3) T is an isotropic element with coupling node, u has reduced regularity,
(4) T is an anisotropic flat element without coupling node, u has full regularity,
(5) T is an anisotropic flat element with coupling node, u has full regularity,
(6) T is an anisotropic needle element without node on the singular edge, u has full regularity,
(7) T is an anisotropic needle element with node on the singular edge, u has full regularity.
(8) T is an anisotropic needle element with node on the singular edge, u has reduced regularity.

In Lemma 2.1 we present the general approach for the proof of the local interpolation error estimate by
considering isotropic elements with and without coupling nodes (cases 1 and 2). We proceed with Lemmas 2.2
where we introduce for isotropic elements how to cope with the weighted norms in the case of reduced regularity
(case 3). The interpolated function is only from a weighted Sobolev space but we will see that this even simplifies
some parts of the proof.

For anisotropic elements the use of an inverse inequality (as was done in the previous lemmas) has to be
avoided; instead we use the structure of the meshes in the macro-elements of Types 3 and Type 4. We start
with a stability estimate of ∂3Dhu which allows immediately the treatment of anisotropic flat elements (cases
4 and 5) in Lemma 2.4. Then we prove stability estimates for the remaining derivatives and continue with the
interpolation error estimates for needle elements. Lemma 2.8 is devoted to cases 6 and 7, and Lemma 2.10 to
case 8.
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All these local estimates can then be combined to prove the global interpolation error estimate, see Theo-
rem 2.11, and the finite element error estimates, see Corollary 2.13.

Lemma 2.1 (isotropic element, full regularity). If T is an isotropic element then the local interpolation error
estimate

|u−Dhu|H1(T ) ≤ ChT |u|H2(ST ) (10)

holds provided that u ∈ H2(ST ) and u(n) = 0 for all n ∈ Nc.

Proof. Following the explanations in [31, page 486] and [1, page 1156], an explicit representation of Dhu from
(9) can be given by introducing the unique function ψn ∈ Vh|σn with

∫
σn
ψnφj = δnj for all j ∈ N such that

(Πσnu)(n) =

∫
σn

uψn (11)

and

Dhu|T =
∑

n∈NT \Nc

(∫
σn

uψn

)
· φn. (12)

Note that
‖ψn‖L∞(σn) = C |σn|−1, (13)

compare [1, page 1157]. (By some calculation one can even specify that C = 4.) With (12), the inverse
inequality

|φn|H1(T ) ≤ Ch−1
T |T |1/2‖φn‖L∞(T ) ≤ Ch−1

T |T |1/2, (14)

the trace theorem, see (65) with p = 1, q = 2,

‖u‖L1(σn) ≤ C|σn||ST |−1/2(‖u‖L2(ST ) + hT |u|H1(ST ) + h2
T |u|H2(ST )), (15)

and |ST | ≤ C|T | we obtain

|Dhu|H1(T ) ≤ C
∑
n∈NT

‖u‖L1(σn)‖ψn‖L∞(σn)|φn|H1(T )

≤ Ch−1
T (‖u‖L2(ST ) + hT |u|H1(ST ) + h2

T |u|H2(ST )). (16)

If T does not contain a node n ∈ Nc we find that Dhw = w for all w ∈ P1 such that we get by using the
triangle inequality and the stability estimate (16)

|u−Dhu|H1(T ) = |(u− w)−Dh(u− w)|H1(T ) ∀w ∈ P1

≤ |u− w|H1(T ) + |Dh(u− w)|H1(T )

≤ C
(
h−1
T ‖u− w‖L2(ST ) + |u− w|H1(ST ) + hT |u|H2(ST )

)
.

We use now a Deny–Lions type argument (see e.g. [15])

∀u ∈W `,p(ST ) ∃w ∈ P`−1 :
∑̀
j=0

hjT |u− w|W j,p(ST ) ≤ Ch`T |u|W `,p(ST ) (17)

and conclude estimate (10).
In the case when NT contains a node n ∈ Nc we do not have the property that Dhw = w for all w ∈ P1

but we can use that u(n) = 0. Let σn be an edge contained in T having n as an endpoint, and let φn be the



TITLE WILL BE SET BY THE PUBLISHER 9

Lagrange basis function associated with n. (Note that we deal here with nodes n which are not used in the
definition of Dh. Therefore we can assume that σn is local in Λ`.) Consequently, we have with the previous
argument that

|u− (Dhu+ (Πσnu)(n)φn)|H1(T ) ≤ ChT |u|H2(ST ). (18)

Let ITu be the linear Lagrange interpolant of u on T . Since ITu|σn is linear, we have have (ΠσnITu)(n) = 0.
From this fact and using (11)–(15) as in the derivation of (16) (here with the specific T instead of ST since
σn ⊂ T ), we have

|(Πσnu)(n)φn|H1(T ) = |(Πσn(u− ITu))(n)φn|H1(T )

≤ Ch−1
T

(
|u− ITu|L2(T ) + hT |u− ITu|H1(T ) + h2

T |u|H2(T )

)
≤ ChT |u|H2(T )

where we used standard estimates for the Lagrange interpolant in the last step. With (18) and the triangle
inequality we conclude estimate (10) also in this case. �

Lemma 2.2 (isotropic element, reduced regularity). If T is an isotropic element with RT = 0, then the local
interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−β
T ‖u‖V 2,2

β,0 (ST ) (19)

holds provided that u ∈ V 2,2
β,0 (ST ), β ∈ [0, 1).

Proof. We start as in the proof of Lemma 2.1 but use the sharper trace inequality from Lemma A.1

‖u‖L1(σn) ≤ C|σn||ST |−1(‖u‖L1(ST ) + hT |u|W 1,1(ST ) + h2
T |u|W 2,1(ST )).

With (12), (13), (14), and |ST | ≤ C|T | we obtain

|Dhu|H1(T ) ≤ C
∑
n∈NT

‖u‖L1(σn)‖ψn‖L∞(σn)|φn|H1(T )

≤ C|ST |−1/2(h−1
T ‖u‖L1(ST ) + |u|W 1,1(ST ) + hT |u|W 2,1(ST ))

≤ C(h−1
T ‖u‖L2(ST ) + |u|H1(ST ) + |ST |−1/2hT |u|W 2,1(ST ))

and hence via the triangle inequality

|u−Dhu|H1(T ) ≤ C(h−1
T ‖u‖L2(ST ) + |u|H1(ST ) + |ST |−1/2hT |u|W 2,1(ST )). (20)

Due to the assumed property RT = 0 we have 0 ≤ R(x) ≤ hT for all x ∈ T , hence 1 ≤ hTR−1, and we obtain

‖u‖L2(ST ) ≤ h2−β
T ‖u‖V 0,2

β−2,0(ST ),

|u|H1(ST ) ≤ h1−β
T |u|V 1,2

β−1,0(ST ).

To estimate the third term we use the Cauchy–Schwarz inequality and again R ≤ hT , to obtain for |α| = 2

|Dαu|L1(ST ) ≤ ‖R−β‖L2(ST )‖RβDαu‖L2(ST ) ≤ C|ST |1/2h−βT |u|V 2,2
β,0 (ST )

where ‖R−β‖L2(ST ) ≤ C|ST |1/2h−βT is obtained by executing the integration and using that β < 3
2 . All these

estimates imply estimate (19). �
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In order to prove interpolation error estimates for the anisotropic elements we derive stability estimates for
Dh where we avoid the use of the inverse inequality. Let x1, x2 and x3 be a Cartesian coordinate system with
the x3-direction parallel to the singular edge of Λ. We will estimate separately the L2-norm of the derivatives
of Dhu.

Moreover, the Deny–Lions type argument (17) is not directly applicable for patches of anisotropic elements
and requires an appropriate rescaling. For an arbitrary patch ST , the coordinate transformation (x1, x2, x3) =

F (x̃1, x̃2, x̃3) := (h1,T x̃1, h2,T x̃2, h3,T x̃3) maps a domain S̃ having edge lengths of order one onto ST . One

further observes that both, the diameter of the largest interior ball in S̃ and the diameter of S̃ itself are of order
one. Thus, we conclude from [15] that a polynomial w ∈ P`−1 exists (an averaged Taylor polynomial) such that
for any multi-index |γ| = m the estimate

‖D̃γ(ũ− w̃)‖W `−m,p(S̃) ≤ C|D̃γu|W `−m,p(S̃) (21)

holds, provided that 0 ≤ m ≤ ` and p ∈ [1,∞]. On an arbitrary patch ST we may now apply the transformation

onto S̃, where we exploit the property Dα ' h−αT D̃α, use the Deny–Lions type argument (21) on the reference
setting and apply the transformation back to ST again which leads to

∑
|α|=`−m

hαT |Dα(u− w)|Wm,p(ST ) ≤ C|ST |1/p
∑
|γ|=m

h−γT ‖D̃γ(ũ− w̃)‖W `−m,p(S̃)

≤ C|ST |1/p
∑
|γ|=m

h−γT |D̃γ ũ|W `−m,p(S̃)

≤ C
∑

|α|=`−m

hαT |Dαu|Wm,p(ST ). (22)

Let T be an anisotropic element with the characteristic lengths h1,T = h2,T and h3,T . We will not use that
h3,T ≥ hj,T , j = 1, 2, in the next lemma in order to use this estimate both for the needle and the flat elements.

Lemma 2.3 (Stability in direction of the singular edge). For any anisotropic element T the estimate

‖∂3Dhu‖L2(T ) ≤ C|ST |−1/2
∑
|α|≤1

hαT ‖Dα∂3u‖L1(ST )

holds provided that ∂3u ∈W 1,1(ST ).

Proof. We observe that T has an edge eT parallel to the singular edge, and so, parallel to the x3-axis. Since
Dhu is linear on T , we have ∂3Dhu|T = ∂3Dhu|eT . If eT is contained on the singular edge, then ∂3Dhu|T = 0
since Dhu|eT = u|eT = 0 and we are done. Now, consider the case that eT is not contained in a singular edge
and denote its endpoints by n1 and n2 such that ∂3φn1

∣∣
T

= −h−1
3,T and ∂3φn2

∣∣
T

= h−1
3,T . Then we have

∂3Dhu = h−1
3,T

[∫
σn2

uψn2 −
∫
σn1

uψn1

]

We observe now that by our assumptions σn1 and σn2 have the same projection σT into the x1x2-plane and
hence form two opposite edges of a plane quadrilateral or triangle which is parallel to the x3-axis and which
we will denote by FT . We note further that ψn1

and ψn2
can be considered as the same function ψT defined on
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σT and ‖ψT ‖L∞(σT ) = C|σT |−1. Moreover, the relation |FT | ' h3,T |σn| holds. With this insight we obtain

|∂3Dhu| = h−1
3

∣∣∣∣∣
∫
σn2

uψn2
−
∫
σn1

uψn1

∣∣∣∣∣ = h−1
3,T

∣∣∣∣∫
FT

∂3uψT

∣∣∣∣
≤ Ch−1

3,T |σT |−1‖∂3u‖L1(FT ) ≤ C|FT |−1‖∂3u‖L1(FT ).

We integrate this estimate over T , apply the standard trace theorem

‖v‖L1(FT ) ≤ C|FT ||ST |−1
∑
|α|≤1

hαT ‖Dαv‖L1(ST )

and obtain the desired estimate. �

We are now prepared to estimate the interpolation error for the flat elements occurring far away from the
singular edge in cases 4 and 5.

Lemma 2.4 (anisotropic flat element, full regularity). If T is an anisotropic flat element (h3,T ≤ h1,T = h2,T )
then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ C
∑
|α|=1

hαT |Dαu|H1(ST ) (23)

holds provided that u ∈ H2(ST ).

Proof. The proof for ∂3(u − Dhu) can be done on the basis of Lemma 2.3. Assume for the moment that the
element T does not contain a coupling node. Similar to the proof of Lemma 2.1 we obtain for any first-order
polynomial w ∈ P1

‖∂3(u−Dhu)‖L2(T ) = ‖∂3(u− w)− ∂3Dh(u− w)‖L2(T ) ≤ C
∑
|α|≤1

hαT ‖Dα∂3(u− w)‖L2(ST ).

Applying now the Deny–Lions type argument (22) with ` = 1 and m = 0 leads to the estimate

‖∂3(u−Dhu)‖L2(T ) ≤ C
∑
|α|=1

hαT ‖Dα∂3u‖L2(ST ).

Note that the polynomial w can be chosen such that it vanishes in three nodes of T . It is completely described
by choosing the appropriate value at one endpoint of the edge of T which is parallel to the x3-axis. Since a
possible coupling node is not an endpoint of this edge, the argument above can also be used in the case of
coupling nodes.

For the other directions we can proceed as in the proof of Lemma 2.1. If T contains a coupling node we
assumed that σn ⊂ T for all n ∈ NT \Nc. Thus, we may apply the trace theorem, see (64), which reads in our
setting

‖v‖L1(σn) ≤ C|σn||T |−1/2
∑
|α|≤2

hαT ‖Dαv‖L2(T ) (24)

instead of (15). Then we obtain together with ‖∂iφn‖L2(T ) ≤ Ch−1
i,T |T |1/2 and ‖ψ‖L∞(σn) ≤ C|σn|−1

‖∂iDhv‖L2(T ) ≤
∑

n∈NT \Nc

‖v‖L1(σn)‖ψn‖L∞(σn)‖∂iφn‖L2(T )

≤ Ch−1
i,T

∑
|α|≤2

hαT ‖Dαv‖L2(T ), i = 1, 2.
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Choosing now v = u − ITu and exploiting the fact that [ITu](n) = 0 if n ∈ Nc (this implies DhITu = ITu)
yields

‖∂i(u−Dh)u‖L2(T ) ≤ C
[
‖∂i(u− ITu)‖L2(T ) + ‖∂iDh(u− ITu)‖L2(T )

]
≤ Ch−1

i,T

∑
|α|≤2

hαT ‖Dα(u− ITu)‖L2(T ).

On a reference element T̂ we may apply the standard interpolation error estimate ‖û − IT û‖H1(T̂ ) ≤ |û|H2(T̂ )

and we get

‖∂i(u−Dh)u‖L2(T ) ≤ Ch−1
i,T

∑
|α|=2

hαT ‖Dαu‖L2(T ) ≤ C
∑
|α|=1

hαT |Dαu|H1(T ).

If T does not contain a coupling node, then estimate (24) does not hold, but if the norm over T is replaced
by the norm over the patch ST on the right-hand side. Certainly, the property Dhw = w on T holds for an
arbitrary w ∈ P1 and the technique from the proof of Lemma 2.1 can be applied again. We then obtain

‖∂i(u−Dhu)‖L2(T ) ≤ Ch−1
i,T

∑
|α|≤2

hαT ‖Dα(u− w)‖L2(ST ) ≤ Ch−1
i,T

∑
|α|=2

hαT ‖Dαu‖L2(T )

by again using the Deny–Lions type argument (22) with ` = 2 and m = 0. With hi,T ' max{hj,T , j = 1, 2, 3}
we get the assertion. �

It remains to prove interpolation error estimates for needle elements such that we will assume h1,T = h2,T ≤
Ch3,T for the next lemmas. Those elements never contain interior coupling nodes.

Lemma 2.5 (Stability in direction perpendicular to singular edge, anisotropic needle element away from singular
edge). Assume that the element T does not contain a node n ∈ Ns and that h1,T = h2,T ≤ Ch3,T . Then for
i = 1, 2 we have

‖∂iDhu‖L2(T ) ≤ C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
(25)

provided that u ∈ H1(ST ) and ∂3u ∈ H1(ST ).

Proof. For each node n ∈ NT we denote by Fn,T the top or bottom face of the prismatic domain ST such that

n ∈ Fn,T . Observe that we have σn ⊂ Fn,T ⊂ ST for all n ∈ NT . Observe further that Fn,T is isotropic with
diameter of order h1,T and recall the standard trace inequality

‖v‖L1(σn) ≤ C|σn||Fn,T |−1
(
‖v‖L1(Fn,T ) + h1,T |v|W 1,1(Fn,T )

)
(26)

for all v ∈W 1,1(Fn,T ). We need also the trace inequality

‖v‖L1(Fn,T ) ≤ C|Fn,T ||ST |−1
(
‖v‖L1(ST ) + h3,T ‖∂3v‖L1(ST )

)
(27)

which can be proved by using Lemma A.3 from page 26 and the facts that ST is a union of prisms, and Fn,T is
a face of ST .

Let sT be one of the short edges of T and denote its endpoints by n1 and n2. We use the same notation
sT for the direction of this edge in order to denote by ∂sT v = ∇v · sT /|sT | the directional derivative. In the
following we first estimate ‖∂sTDhu‖L2(T ). After that, the desired estimates (25) easily follow as we will show.



TITLE WILL BE SET BY THE PUBLISHER 13

Notice that if n ∈ NT \{n1, n2} we have ∂sT φn = 0, and if n ∈ {n1, n2} then ‖∂sT φn‖L∞(T ) = |sT |−1 ≤ Ch−1
1,T .

For all w ∈ P0(ST ) we have (and here we use that the element does not contain a node n ∈ Nc ∪Ns)

‖∂sTDhu‖L2(T ) = ‖∂sTDh(u− w)‖L2(T )

≤
∑

n∈NT∩sT

∣∣∣∣∫
σn

(u− w)ψn

∣∣∣∣ ‖∂sT φn‖L2(T )

≤ Ch−1
1,T |T |1/2

∑
n∈NT∩sT

‖u− w‖L1(σn)‖ψn‖L∞(σn)

≤ Ch−1
1,T |T |1/2

∑
n∈NT∩sT

|σn|−1‖u− w‖L1(σn). (28)

From the trace inequality (26) we have for each n ∈ NT ∩ sT

‖u− w‖L1(σn) ≤ C|σn||Fn,T |−1
(
‖u− w‖L1(Fn,T ) + h1,T |u|W 1,1(Fn,T )

)
.

Since the definition of Fn,T implies Fn1,T = Fn2,T =: FT , we have

‖u− w‖L1(σn) ≤ C|σn||FT |−1
(
‖u− w‖L1(FT ) + h1,T |u|W 1,1(FT )

)
.

Now we choose w as the average of u on FT and use a Poincaré type inequality on FT to get

‖u− w‖L1(σn) ≤ C|σn||FT |−1h1,T |u|W 1,1(FT ).

Therefore we arrive at

‖∂sTDhu‖L2(T ) ≤ C|T |1/2|FT |−1|u|W 1,1(FT )

≤ C|T |1/2|ST |−1
(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
≤ C|ST |−1/2

(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
(29)

≤ C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
where we used again the trace inequality (27).

Now, let s1,T and s2,T be two different short edges (edge vectors) of T such that the determinant of the
matrix made up of

s1,T
|s1,T | ,

s2,T
|s2,T | and e3 as columns is greater than a constant depending only the maximum

angle of T . Note that this is possible due to the maximal angle condition, see [18]. Then, if the canonical vector
ei, i = 1, 2, is expressed as

ei = c1,i
s1,T

|s1,T |
+ c2,i

s2,T

|s2,T |
+ c3,ie3,

it follows that c1,i, c2,i and c3,i are bounded by above by a constant depending only on the maximum angle
condition. Since

∂i = c1,i∂s1,T + c2,i∂s2,T + c3,i∂3

we obtain (25) from (29) with sT = s1,T and sT = s2,T , Lemma 2.3, and recalling that h1,T = h2,T ≤ Ch3,T . �

Lemma 2.6 (Stability in direction perpendicular to singular edge, anisotropic needle element at the singular
edge, full regularity). Assume that T ∈ Th is an element belonging to the macro-element Λ` touching the singular
edge e` of that macro-element. Define the extended patch

S̃T :=
⋃
{ST ′ : NT ∩Ns ∩NT ′ 6= ∅, T ′ ⊂ Λj with e` ⊂ Λj ∩ Λ`},
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5

Figure 4. Possible situation where σn for n ∈ Ns belongs to a different macro-element than T .
Edge σn is on the boundary.

(Λj denotes a macro-element) which may intersect multiple macro-elements. Then for i = 1, 2 the stability
estimate

‖∂iDhu‖L2(T ) ≤ C
(
|u|H1(S̃T ) + h3,T |∂3u|H1(S̃T )

)
holds, provided that u ∈ H2(S̃T ) ∩H1

0 (Ω).

Proof. As pointed out in the proof of Lemma 2.5, it is enough to estimate ∂sT for two different short edges sT
of T . For nodes on the singular edge, n ∈ NT ∩ Ns, we define a corresponding σn as a short edge with n ∈ σn
and σn ⊂ ∂Ω (note that we did not define σn for n ∈ Ns on page 6). If n ∈ NT ∩ Ns is a singular vertex
(belonging to a singular edge) then we further assume that σn is a short edge of some element belonging to a
macro-element that shares the singular edge e` with the macro-element Λ` containing T . In any case, we have

σn ⊂ S̃T . Throughout the proof we write

D̃hu := Dhu+
∑

n∈NT∩Ns

(Πσnu) · ϕn. (30)

We point out that D̃h may change with T . Let sT denote a short edge having endpoints n ∈ Ns and n1 ∈ NT \Ns.

Note that Lemma 2.5 would hold for the interpolant D̃h if σn and σn1
would belong to the same macro-element.

Since this is not always the case in the present situation we show that we can reduce it to the case where Lemma
2.5 is applicable. For simplification we consider the special case depicted in Figure 4, and one easily confirms
that the following technique holds also for more general cases. We may decompose the derivative along sT as
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follows:

‖∂sT D̃hu‖L2(T ) = |sT |−1‖D̃hu(n1)− D̃hu(n)‖L2(T )

= |sT |−1|T |1/2|D̃hu(n1)− D̃hu(n)|

≤ C|sT |−1

(
3∑
i=1

|Ti+1|1/2|D̃hu(ni)− D̃hu(ni+1)|+ |T5|1/2|D̃hu(n4)− D̃hu(n)|
)

≤ C
(

3∑
i=1

‖∂nini+1
D̃hu‖L2(Ti+1) + ‖∂nn4

D̃hu‖L2(T5)

)
, (31)

where Ti+1 is an element having n, ni and ni+1 as nodes and contained in the macroelent Λi+1. We remark
that, if n and m are nodes of an edge s, we denote by ∂nm a derivative in the direction of s. Since σni and σni+1

(resp. σ4 and σn) belong to the same macro-element Λi+1 (resp. Λ5) we obtain using the same arguments as
in the proof of Lemma 2.5

‖∂nini+1D̃hu‖L2(Ti+1) ≤ C
(
|u|H1(S̃T ) + h3,T |∂3u|H1(S̃T )

)
. (32)

Analogously, this estimate also follows for ‖∂nn4
D̃hu‖L2(T5). Inserting (32) into (31) leads to the desired estimate

for D̃h. Due to u ∈ H1
0 (Ω) we have D̃hu = Dhu and the proof is finished. �

Lemma 2.7 (Stability in direction perpendicular to singular edge, anisotropic needle element at the singular
edge). Assume that the element T contains at least one node n ∈ Ns and that h1,T = h2,T ≤ Ch3,T . Then we
have for i = 1, 2

‖∂iDhu‖L2(T ) ≤ C|ST |−1/2

|u|W 1,1(ST ) +
h3,T

hi,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 (33)

provided that u ∈W 2,1(ST ).

Proof. For each node n ∈ Ns∩NT we select one short edge σn with an endpoint at n and contained in the same
macro-element as T such that we can apply estimate (29) from the proof of Lemma 2.5 (note that we did not
define σn for n ∈ Ns on page 6). We have for i = 1, 2∥∥∥∥∥∂i

(
Dhu+

∑
n∈Ns∩NT

(Πσnu)(n)φn

)∥∥∥∥∥
L2(T )

≤ C|ST |−1/2
(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
. (34)

Now we deal with ‖∂i[(Πσnu)(n)φn]‖L2(T ) which is first estimated by

‖∂i[(Πσnu)(n)φn]‖L2(T ) ≤ C‖∂iφn‖L2(T )|σn|−1‖u‖L1(σn) (35)

for each n ∈ Ns ∩NT .
Let n ∈ Ns ∩ NT and be Fn,T be the face of ST having σn as an edge and another edge on the singular

edge. Let Pn,T be the greatest parallelogram contained in Fn,T and having σn as an edge. So, Pn,T is parallel
to the x3-axis, and its area is comparable with the area of Fn,T since opposite edges of the trapezoid Fn,T have
equivalent length. Using a trace inequality we have

‖u‖L1(σn) ≤ C|σn||Fn,T |−1(‖u‖L1(Pn,T ) + h3,T ‖∂3u‖L1(Pn,T )).
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But, since u = 0 on the edge of Pn,T contained on the singular edge we can use the Poincaré inequality to obtain

‖u‖L1(σn) ≤ C|σn||Fn,T |−1(|σn|‖∂σnu‖L1(Pn,T ) + h3,T ‖∂3u‖L1(Pn,T )). (36)

From Lemma A.4 we have for all v ∈W 1,1(ST )

‖v‖L1(Pn,T ) ≤ C|Fn,T ||ST |−1
(
‖v‖L1(ST ) + |s1,T |‖∂s1,T v‖L1(ST ) + |s2,T |‖∂s2,T v‖L1(ST )

)
. (37)

Using twice (37) we obtain from (36)

‖u‖L1(σn) ≤ C|σn|2|ST |−1
(
‖∂σnu‖L1(ST ) + |s1,T |‖∂s1,T ∂σnu‖L1(ST ) + |s2,T |‖∂s2,T ∂σnu‖L1(ST )

)
+

+ C|σn||ST |−1h3,T

(
‖∂3u‖L1(ST ) + |s1,T |‖∂s1,T ∂3u‖L1(ST ) + |s2,T |‖∂s2,T ∂3u‖L1(ST )

)
. (38)

With the estimates

‖∂σnu‖L1(ST ) ≤ |u|W 1,1(ST ),

‖∂si,T ∂σnu‖L1(ST ) ≤ |u|W 2,1(ST ), i = 1, 2,

‖∂si,T ∂3u‖L1(ST ) ≤ |∂3u|W 1,1(ST ), i = 1, 2,

the inequality

‖∂iφn‖L2(T ) ≤ Ch−1
i,T |T |1/2,

and |σn| ∼ hi,T (i = 1, 2) we obtain from (35)

‖∂i[(Πσnu)(n)φn]‖L2(T ) ≤ C|ST |−1/2
(
|u|W 1,1(ST ) + (h1,T + h2,T )|u|W 2,1(ST )

)
+ C|ST |−1/2

(
h3,T

hi,T
‖∂3u‖L1(ST )+h3,T |∂3u|W 1,1(ST )

)
. (39)

Finally, taking into account that, since h1,T = h2,T ≤ Ch3,T , we have

(h1,T + h2,T )|u|W 2,1(ST ) + h3,T |∂3u|W 1,1(ST ) ≤ C
∑
|α|=1

hαT |Dαu|W 1,1(ST ),

inequality (33) follows from (34) and (39). �

We are now prepared to estimate the interpolation error for needle elements.

Lemma 2.8 (anisotropic needle element, full regularity). If T is an anisotropic element with h1,T = h2,T ≤
Ch3,T and Ns ∩NT = ∅, then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ C
∑
|α|=1

hαT |Dαu|H1(ST ) (40)

holds provided that u ∈ H2(ST ). Assume T touches the singular edge, that is Ns ∩ NT 6= ∅. Let S̃T be the
patch defined in Lemma 2.6, then the estimate

|u−Dhu|H1(T ) ≤ C
∑
|α|=1

hαT |Dαu|H1(S̃T )

holds, if u ∈ H2(S̃T ) ∩H1
0 (Ω).
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Remark 2.9.

(1) The estimate (40) does not hold for the Lagrange interpolant, see [2].
(2) This lemma will be applied in the proof of Theorem 2.11 in two situations: for the singular part of the

solution of the boundary value problem and away from the edge, but also for the regular part of the
solution for all T .

Proof. (Lemma 2.8) We have full regularity and in case that T does not touch the singular edge, we may apply
the stability estimates of Lemmas 2.3 and 2.5 which leads to

|Dhu|H1(T ) ≤ C
∑
|α|≤1

hαT ‖Dα∂3u‖L2(ST ) + C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
≤ C

∑
|α|≤1

hαT |Dαu|H1(ST ).

We exploit that Dhw = w for an arbitrary w ∈ P1. Consequently, we get

|u−Dhu|H1(T ) = |(u− w)−Dh(u− w)|H1(T )

≤ |u− w|H1(T ) + |Dh(u− w)|H1(T )

≤ C
∑
|α|≤1

hαT |Dα(u− w)|H1(ST ).

We use now again the Deny–Lions type argument (22) with ` = 2 and m = 1, and conclude the desired estimate.

For the case that T touches the singular edge we use the modified interpolant (30) and replace ST by S̃T in
the above considerations. Moreover, the stability estimate of Lemma 2.6 has to be used then in the first step
of this proof. With D̃hu = Dhu for u vanishing on the boundary we get the desired estimate. �

Lemma 2.10 (anisotropic needle element, reduced regularity). Let T be an anisotropic element with h1,T =
h2,T ≤ Ch3,T and let ST have zero distance to the singular edge. Then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−δ
1,T

2∑
i=1

‖∂iu‖V 1,2
δ,δ (ST ) + Ch3,T ‖∂3u‖V 1,2

0,0 (ST ) (41)

holds provided that u has the regularity demanded by the right-hand sides of the estimates and δ ∈ [0, 1). If T
is an element with h1,T = h2,T ≤ Ch3,T and ST has zero distance to both a singular vertex and a singular edge
then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−β−δ
1,T hδ3,T

2∑
i=1

‖∂iu‖V 1,2
β,δ (ST ) + Ch−β1,Th3,T ‖∂3u‖V 1,2

β,0 (ST ) (42)

hold provided that u has the regularity demanded by the right-hand sides of the estimates and β, δ ∈ [0, 1),
β + δ < 1.

Proof. As in the proof of Lemma 2.8 we distinguish between the derivatives ∂3Dhu and the derivatives along
directions perpendicular to the x3-axis. From Lemma 2.3 we obtain by using the triangle inequality and
|ST |−1/2‖∂3u‖L1(ST ) ≤ ‖∂3u‖L2(T )

‖∂3(u−Dhu)‖L2(T ) ≤ ‖∂3u‖L2(T ) + C|ST |−1/2
∑
|α|≤1

hαT ‖Dα∂3u‖L1(ST )

≤ C‖∂3u‖L2(ST ) + C|ST |−1/2
∑
|α|=1

hαT ‖Dα∂3u‖L1(ST ).
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For the estimate of ∂iDhu, i = 1, 2, we use Lemma 2.7, from which we conclude that

‖∂i(u−Dhu)‖L2(T )

≤ C|u|H1(ST ) + C|ST |−1/2

h3,T

hi,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 .

These two estimates can be summarized to

|u−Dhu|H1(T )

≤ C|u|H1(ST ) + C|ST |−1/2

h3,T

h1,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 . (43)

It remains to estimate the terms against the weighted norms. In case that ST touches the singular vertex we
have

|u|H1(ST ) ≤
2∑
i=1

‖R1−βθ1−δ ·Rβ−1θδ−1∂iu‖L2(T ) + ‖R1−βθ ·Rβ−1θ−1∂3u‖L2(T )

≤
2∑
i=1

max
ST

R1−βθ1−δ ‖∂iu‖V 1,2
β,δ (ST ) + max

ST
R1−β ‖∂3u‖V 1,2

β,0 (ST ).

With R1−βθ1−δ = r1−δR−βRδ ≤ r1−β−δRδ ≤ Ch1−β−δ
1,T hδ3,T (where we used the assumption β + δ ≤ 1) and

R1−β ≤ h1−β
3,T ≤ h−β1,Th3,T we derive

|u|H1(ST ) ≤ Ch1−β−δ
1,T hδ3,T

2∑
i=1

‖∂iu‖V 1,2
β,δ (ST ) + Ch−β1,Th3,T ‖∂3u‖V 1,2

β,0 (ST ).

With R1−δθ1−δ = r1−δ ≤ Ch1−δ
1,T (using that the exponent is positive) we derive also

|u|H1(ST ) ≤ Ch1−δ
1,T

2∑
i=1

‖∂iu‖V 1,2
δ,δ (ST ) + Ch3,T ‖∂3u‖V 1,2

0,0 (ST ).

In the other case that T intersects the singular edge, but no singular vertex, we have

h3,T

h1,T
‖∂3u‖L1(ST ) ≤

h3,T

h1,T
‖∂3u‖V 1,2

0,0 (ST )‖r‖L2(ST ) ≤ h3,T |ST |1/2‖∂3u‖V 1,2
0,0 (ST ).

If T has also a singular vertex, then we have with Rβ−1θ−1 = Rβr−1

h3,T

h1,T
‖∂3u‖L1(ST ) ≤

h3,T

h1,T
‖∂3u‖V 1,2

β,0 (ST )‖R−βr‖L2(ST ) ≤ h3,Th
−β
1,T |ST |1/2‖∂3u‖V 1,2

β,0 (ST )

where we used that

‖R−βr‖L2(ST ) ≤ ‖r1−β‖L2(ST ) ≤ Ch1−β
1,T |ST |1/2 (44)
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which can be obtained by integration. The second derivatives in estimate (43) are treated in a similar way. For
i = 1, 2, 3 we get

‖∂i3u‖L1(ST ) ≤ ‖R−β‖L2(ST )‖Rβ∂i3u‖L2(ST ) ≤ h−β1,T |ST |1/2‖∂3u‖V 1,2
β,0 (ST ).

For i, j = 1, 2 and supposing that T does not have singular vertices we have

hi,T ‖∂iju‖L1(ST ) ≤ h1,T ‖R−δθ−δ‖L2(ST )‖Rδθδ∂iju‖L2(ST )

≤ h1−δ
1,T |ST |1/2|∂iu|V 1,2

δ,δ (ST ),

where we used again an argument as in (44). If T has a singular vertex, then

hi,T ‖∂iju‖L1(ST ) ≤ h1,T ‖R−βθ−δ‖L2(ST )‖Rβθδ∂iju‖L2(ST ).

Note that R−βθ−δ = R−β+δr−δ ≤ Rδr−β−δ ≤ hδ3,T r−β−δ hold due to β + δ < 1. The norm ‖r−β−δ‖L2(ST ) can
be computed exactly by executing the integration which leads to

‖R−βθ−δ‖L2(ST ) ≤ hδ3,T ‖r−β−δ‖L2(ST ) ≤ Ch−β−δ1,T hδ3,T |ST |1/2.

Hence we have
hi,T ‖∂iju‖L1(ST ) ≤ Ch1−β−δ

1,T hδ3,T |ST |1/2‖∂iu‖V 1,2
β,δ (ST ).

Therefore, the desired estimates are proved. �

Theorem 2.11 (global interpolation error estimate). Let u be the solution of the boundary value prob-
lem (1) with f ∈ L2(Ω), and let uI , uR be the functions obtained from the splitting (8). Assume that the
refinement parameters µ` and ν` satisfy the conditions

µ` < λ(`)
e , (45)

ν` < λ(`)
v +

1

2
, (46)

1

ν`
+

1

µ`

(
λ(`)

v −
1

2

)
> 1, (47)

` = 1, . . . , L. Then the global interpolation error estimate

|uR −DhuR|H1(Λ`) ≤ Ch‖f‖L2(Ω) (48)

is satisfied.

Proof. The estimation of the global error can be reduced to the evaluation of the global error to each macro-
element Λ`. So we will consider such a subdomain Λ` with one singular edge and one singular vertex. The other
cases are treated in an even simpler way. We will omit the index `.

In view of Theorem 1.1 and the decompositions (7) and (8) we have uR = (ur−uI)+us with ur−uI ∈ H2(Λ),
so we need to consider the interpolation error for both the regular part, which we denote now by w := ur − uI ,
and the singular part us. Note, that the choice of us is not unique and it is possible to guarantee the property
us(n) = 0 for all n ∈ Nc. This implies w(n) = 0 for n ∈ Nc which is used later.

We begin with an estimate for the regular part w. Since

|w −Dhw|2H1(Λ) =
∑
T⊂Λ

|w −Dhw|2H1(T ) (49)
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we can use the local interpolation estimates from Lemma 2.1 when T is isotropic, Lemma 2.4 when T is flat,
and Lemma 2.8 when T is a needle element away from the singular edge, which yields

|w −Dhw|H1(T ) ≤ ChT |w|H2(ST ) = hT |ur|H2(ST ) (50)

for all these cases. For those T which touch the singular edge the local estimate of Lemma 2.8 reads now

|w −Dhw|H1(T ) = |ur −Dhur|H1(T ) ≤ ChT |ur|H2(S̃T ). (51)

Here, we have a patch S̃T on the right-hand side which may be contained in multiple macro-elements. Inserting
now (50) and (51) into (49) yields

|w −Dhw|2H1(Λ) ≤ Ch2|ur|2H2(Ω) ≤ Ch2‖f‖2L2(Ω),

where we used that hT (= diam(T )) ≤ h for all T ∈ Th and that the ST and S̃T may overlap only a finite number
(independent of h) of times.

Now consider the estimate of |us −Dhus|H1(Λ). Firstly, denote by TR the set of all elements T ⊂ Λ whose
patches ST are away from the singular edge and from the singular vertex. This also implies

RT ≥ h1/ν , rT ≥ h1/µ. (52)

We further set ΛR = ∪{T : T ∈ TR}. Since us ∈ H2(ST ) on these elements we use Lemma 2.1, 2.4 or 2.8 as
appropriate to have

|us −Dhus|H1(T ) ≤
∑
|α|=1

hαT |Dαus|H1(ST )

Due to the mesh condition we have hi,T ≤ Chr1−µ
T ≤ hr(x)1−µ for i = 1, 2 and h3,T ≤ ChR1−ν

T ≤ hR(x)1−ν

for all x ∈ ST and thus the estimates

hi,T |∂ius|H1(ST ) ≤ h|us|V 1,2
1−µ,1−µ(ST ), for i = 1, 2, and

h3,T |∂3us|H1(ST ) ≤ h|us|V 1,2
1−ν,0(ST )

follow. Notice that due to our assumptions upon µ and ν the inequalities

1− µ > 1− λe, 1− ν > 1

2
− λv, and 1− µ > 1

2
− λv (53)

hold, where the last estimate is equivalent to

1

µ
+

1

µ

(
λv −

1

2

)
> 1

which follows from (47) taking µ ≤ ν into account. Due to the estimates (53) Theorem 1.1 can be applied and
we obtain

|u|V 1,2
1−µ,1−µ(Λ) ≤ C‖f‖L2(Ω), |u|V 1,2

1−ν,0(Λ) ≤ C‖f‖L2(Ω).

Then summing up all the elements T ∈ TR we arrive at

|us −Dhus|H1(ΛR) ≤ Ch‖f‖L2(Ω).
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Secondly, let TE be the set of elements T which are away from the singular vertex, i. e. RT ≥ h1/ν , but such
that ST intersects the singular edge, and set ΛE = ∪{T : T ∈ TE}. We use inequality (41) of Lemma 2.10
(which is valid when T is isotropic too) with δ = 1− µ. Due to h3,T ≤ ChR1−ν

T on ST , we get

h3,T ‖∂3us‖V 1,2
0,0 (ST ) ≤ h‖∂3us‖V 1,2

1−ν,0(ST ).

As in the previous case we now sum up all elements T ∈ TE and apply Theorem 1.1 exploiting the properties
(53) again. This leads to

‖∂ius‖V 1,2
1−µ,1−µ(ΛE) ≤ C‖f‖L2(Ω), i = 1, 2,

‖∂3us‖V 1,2
1−ν,0(ΛE) ≤ C‖f‖L2(Ω),

and as a consequence we obtain
|us −Dhus|H1(ΛE) ≤ Ch‖f‖L2(Ω).

Finally, we denote by TS the set of all the elements T such that ST contains the singular vertex, and by ΛS
the union of all such elements. If T is one of these elements, we have h1,T = h2,T ≤ Ch1/µ and h3,T ≤ Ch1/ν .
So using inequality (42) of Lemma 2.10, we obtain

|us −Dhus|H1(ΛS) ≤ Ch
1−β−δ
µ + δ

ν

(
‖∂1us‖V 1,2

β,δ (Λ) + ‖∂2us‖V 1,2
β,δ (Λ)

)
+ Ch

1
ν−

β
µ ‖∂3us‖V 1,2

β,0 (Λ) (54)

for β, δ ∈ [0, 1) with β + δ < 1. Let us now construct feasible weights β and δ which satisfy the assumptions
of Theorem 1.1 and yield the expected convergence rate. We set β = 1/2 − λv + ε for some ε > 0 which is
sufficiently small such that the estimates (55)–(57) below hold. Due to µ ≤ ν and (46) we get

1− β − δ
µ

+
δ

ν
≥ 1− β

ν
=

1/2 + λv − ε
ν

≥ 1. (55)

Moreover, with the definition of β and (47) we get

1

ν
− β

µ
=

1

ν
− 1

µ

(
1

2
− λv

)
− ε

µ
≥ 1. (56)

Furthermore, we have to confirm that a feasible δ exists, which means that the inequalities δ < 1−β = 1/2+λv−ε
and δ > 1− λe have to hold simultaneously. A suitable choice of δ is possible since λv > 0, λe > 1/2 and

1/2 < λe + λv − ε. (57)

Inserting now (55) and (56) into (54) and and applying Theorem 1.1 yields

|us −Dhus|H1(ΛS) ≤ Ch‖f‖Ω.

Since Λ = ΛR ∪ ΛE ∪ ΛS the proof is complete. �

Remark 2.12. The refinement conditions (45)–(47) were discussed in [4] already: The conditions (45) and
(46) balance the edge and vertex singularities. The third condition, (47), follows from (46) in the case µ` = ν`;
only in the case µ` < ν` it imposes a condition between µ` and ν` limiting the anisotropy of the mesh. For the

Fichera example treated in Section 3 we have λ
(`)
v ≈ 0.454 and λ

(`)
e = 2

3 . With the choice ν` = 0.9 the conditions

(45) and (47) imply the choice 0.414 < µ` <
2
3 . For ν` = 0.8 we would get the weaker condition 0.184 < µ` <

2
3 .

Note also that in the absence of singularities we have set λ
(`)
e = ∞ and/or λ

(`)
v = ∞. In these cases we can

set µ` = 1 and/or ν` = 1.
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Figure 5. Modification of macro-element of Type 4

Corollary 2.13 (H1 and L2 finite element error estimate). Let u be the solution of the boundary value
problem (1), and let uh be the corresponding finite element solution on a finite element mesh as constructed
in Section 1 with grading parameters satisfying the conditions (45)–(47). Then the discretization error can be
estimated by

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω), (58)

‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω). (59)

Proof. We choose vh = uI + DhuR in estimate (4) and observe that u − vh = uR −DhuR. With Lemma 2.11
we obtain the estimate (58). The L2-error estimate can be derived by the standard Aubin–Nitsche method. �

Remark 2.14. A trivial conclusion from (58) is the stability estimate

‖uh‖H1(Ω) ≤ C‖f‖L2(Ω) (60)

which we will need in Section 4.

Remark 2.15. In macro-elements of Type 4 with µ` = ν` < 1, Apel and Nicaise suggested in [4] the use of
a more elegant refinement strategy as depicted in Figure 5. Our proof cannot be transfered to this kind of
mesh immediately since there may be elements T where ST is not prismatic as it was exploited in the proof of
Lemmas 2.5 and 2.7. We conjecture that the assertion still holds but do not pursue this further in this paper.

3. Numerical test

As in [4] we consider the Poisson problem (1) in the “Fichera domain” Ω := (−1, 1)3 \ [0, 1]3 and choose the
right-hand side f = 1 + R−3/2 ln−1(R/4) which is in L2(Ω) but not in Lp(Ω) for p > 2. For this problem we
have λv ≈ 0.45 for the concave vertex [30] and λe = π

ω0
= 2

3 for the three concave edges. All other edges and
vertices are non-singular.

This boundary value problem was solved on quasi-uniform and on graded meshes with our refinement strategy
using µ = ν = 0.5 < min{λe, λv + 1

2}, where Type 1, Type 2 and Type 4 occur. Additionally we include the
strategy where the macros of Type 4 are replaced by the modified version from Remark 2.15. Pictures of such
meshes can be found in [4]. The refinement strategies and an a posteriori error estimator of residual type [32]
were implemented into the finite element package MooNMD [19]. The estimated error norms are plotted
against the number of unknowns in Figure 6. We see that the theoretical approximation order h1 ∼ N−1/3

from Corollary 2.13 can be verified in the practical calculation for both refinement strategies. The error with
the second strategy is slightly smaller. We denoted by N the number of nodes.
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Figure 6. Plot of the estimated error against the number of unknowns. The labels at the
curve denote the estimated convergence order in terms of h ∼ N−1/3. Strategy 1: anisotropic
refinement using Type 1 –Type 4 ; Strategy 2: anisotropic refinement using the modified rule of
Remark 2.15 instead of Type 4

4. Discretization error estimates for a distributed optimal control problem

Hinze introduced the variational discretization concept for linear-quadratic control constrained optimal con-
trol problems in [17]. We follow here this concept in a special case. Consider the minimization of

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

with the constraint that the state y ∈ H1
0 (Ω) is the weak solution of the Poisson problem

−∆y = u in Ω, y = 0 on ∂Ω, (61)

and, that the control u is restricted by constant bounds ua, ub ∈ R, this means that the set of admissible controls
is defined by

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. Ω}.
The regularization parameter α is a fixed positive number and yd ∈ L2(Ω) is the desired state. It is well known
that this problem has a unique optimal solution (ȳ, ū). There is an optimal adjoint state p̄ ∈ H1

0 (Ω), and the
triplet (ȳ, ū, p̄) satisfies the first order optimality conditions

(∇ȳ,∇v)L2(Ω) = (ū, v)L2(Ω) ∀v ∈ H1
0 (Ω),

(∇p̄,∇v)L2(Ω) = (ȳ − yd, v)L2(Ω) ∀v ∈ H1
0 (Ω),

(αū+ p̄, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad.
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With the variational discretization concept the approximate solution is obtained by replacing H1
0 (Ω) by a finite

element space Vh ⊂ H1
0 (Ω) and searching (ȳh, ūh, p̄h) ∈ Vh × Uad × Vh such that

(∇ȳh,∇vh)L2(Ω) = (ūh, vh)L2(Ω) ∀vh ∈ Vh,
(∇p̄h,∇vh)L2(Ω) = (ȳh − yd, vh)L2(Ω) ∀vh ∈ Vh,

(αūh + p̄h, u− ūh)L2(Ω) ≥ 0 ∀u ∈ Uad.

Note that the control space is not discretized; nevertheless ūh can be obtained by the projection of −p̄h/α onto
Uad, see [17]. The discretization error estimate

‖ū− ūh‖L2(Ω)+‖ȳ − ȳh‖L2(Ω)+‖p̄− p̄h‖L2(Ω) ≤ Ch2
(
‖ū‖L2(Ω)+‖yd‖L2(Ω)

)
can be concluded from (59) and (60), see [7,17]. With the proof of Corollary 2.13 we have established this result
for anisotropic discretizations of the state equation (61) in the case of three-dimensional polyhedral domains.

5. Discrete compactness property for edge elements

The Discrete Compactness Property (DCP) is a useful tool to study the convergence of finite element dis-
cretizations of the Maxwell equations, both for eigenvalue and source problems. It was first introduced by
Kikuchi [20] and proved for Nédélec edge elements of lowest order on tetrahedral shape regular meshes. We
refer to the monograph by Monk [23] and the references therein for further analysis on isotropic meshes. The
property was also analyzed on anisotropically refined tetrahedral meshes on polyhedra for edge elements of
lowest order by Nicaise [25] (excluding vertex singularities) and by Buffa, Costabel, and Dauge [13].

Lombardi [21] extended this result to edge elements of arbitrary order, also including vertex and edge singu-
larities. The proof is based on two tools: 1) interpolation error estimates for edge elements on meshes satisfying
the maximum angle condition, and 2) interpolation error estimates for a piecewise linear interpolation operator
defined on W 2,p(Ω)∩H1

0 (Ω), p ≥ 2, preserving boundary conditions. For the latter, the Lagrange interpolation
was used (implying p > 2) together the results of Apel and Nicaise [4], giving some artificial restrictions on the
grading parameters defining the allowed anisotropically graded meshes. Using now estimate (58) of Corollary
2.13 we can extend the result of [21] allowing little more general meshes.

In what follows we define a family of edge element spaces and introduce the DCP for this family. We refer
to [21] for further definitions and notation. First we introduce the divergence-free space

X = {v ∈ H0(curl,Ω) : div v = 0 on Ω} .

Then we introduce discretizations of this space where the divergence-free condition is weakly imposed. Let I
be a denumerable set of positive real numbers having 0 as the only limit point. From now till the end of this
section, we assume that h ∈ I. For each h, let Th be the mesh on the polyhedron Ω constructed in Section 1.
Given an integer k ≥ 1, let Xh be the space defined as

Xh =
{
vh ∈ H0(curl,Ω) : vh|T ∈ Nk(T )∀T ∈ Th, (∇ph,vh)L2(Ω) = 0∀ph ∈ Sh

}
where Nk(T ) is the space of edge elements of order k on T , and

Sh =
{
ph ∈ H1

0 (Ω) : ph|T ∈ Pk(T )∀T ∈ Th
}
.

We say that the family of spaces {Xh}h∈I satisfies the discrete compactness property if for each sequence
{vh}h∈J, J ⊂ I, verifying for a constant C

vh ∈ Xh, ∀h ∈ J,

‖vh‖H0(curl,Ω) ≤ C, ∀h ∈ J,
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there exists a function v ∈ X and a subsequence {vhn}n∈N such that (for n→∞)

vhn → v in L2(Ω)

vhn ⇀ v weakly in H0(curl,Ω).

Theorem 5.1. If the grading parameters defining the meshes Th satisfy the conditions (45)–(47), then the
family of spaces {Xh}h>0 verifies the discrete compactness property.

Proof. Follow exactly the arguments used to prove Theorem 5.2 of [21] taking into account that the inequality
(4.21) of that paper is now a consequence of estimate (58). �

Appendix A. Proof of trace inequalities

We start from the known trace inequality

‖u‖Lp(σ̂) ≤ Ĉ‖u‖W 1,r(F̂ ) ∀u ∈W 1,r(F̂ ),

where 1 ≤ p ≤ r ≤ ∞, F̂ is the reference triangle (with vertices (0, 0), (1, 0) and (0, 1)), σ̂ is one of its edges and

Ĉ is a constant depending only on p and r. It follows for instance from Theorem 4.2 of [24]. If F is a triangle
and σ is one of its edges, we obtain by a simple rescaling argument (we assume here r <∞.)

‖u‖Lp(σ) ≤ C|σ|1/p|F |−1/r
(
‖u‖Lr(F ) + |`1|‖∂`1u‖Lr(F ) + |`2|‖∂`2u‖Lr(F )

)
∀u ∈W 1,r(F ), (62)

with the constant C depending only on p and r, and where `1 and `2 are two arbitrary sides of F .
Similarly, if T is a tetrahedron, F is one of its faces, `i, i = 1, 2, 3 are three non coplanar edges of T , and if

1 ≤ r ≤ q <∞, we have the inequality

‖u‖Lr(F ) ≤ C|F |1/r|T |−1/q

(
‖u‖Lq(T ) +

3∑
i=1

|`i||∂`iu|Lq(T )

)
∀u ∈W 1,q(T ), (63)

with C depending only on r and q. In fact, (63) is obtained by a rescaling argument from the trace inequality

‖u‖Lr(F̂ ) ≤ Ĉ‖u‖W 1,q(T̂ ) ∀u ∈W 1,q(T̂ )

for a reference element T̂ with a face F̂ , taking as reference element either the tetrahedron with vertices at
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) when the edges `i are concurrent, or the tetrahedron with vertices at
(0, 0, 0), (1, 1, 0), (0, 1, 0) and (0, 0, 1) when they are not.

We can now combine inequalities (62) and (63). Let T be a tetrahedron, σ one of its edges, and `i, i = 1, 2, 3
three non coplanar edges. Then if 1 ≤ p ≤ q <∞ there exists a constant depending only on p and q such that

‖u‖Lp(σ) ≤ C|σ|1/p|T |−1/q

‖u‖Lq(T ) +

3∑
i=1

|`i|‖∂`iu‖Lq(T ) +

3∑
i,j=1

|`i||`j |‖∂`i`ju‖Lq(T )

 ∀u ∈W 2,q(T ).

(64)
Clearly, inequality (64) can be written as

‖u‖Lp(σ) ≤ C|σ|1/p|T |−1/q

‖u‖Lq(T ) + hT |u|W 1,q(T ) + hT
∑
|α|=1

hαT |Dαu|W 1,q(T )

 ∀u ∈W 2,q(T ), (65)

where the constant C depends on p, q and the shape-regularity constant of T . However (65) is also valid on
some arbitrarily anisotropic elements with a uniformly bounded constant C, as we state in the next Lemma.
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Figure 7. Illustration of the prism

Lemma A.1. There exists a constant C depending only on p and q, with 1 ≤ p ≤ q < ∞, but independent of
h, such that for all T ∈ Th and σ edge of T the inequality (65) holds.

Remark A.2. In (65) the derivative Dα refers to a partial derivative with respect to the local Cartesian system
of the macro-element in which T is included.

Proof. The conclusion follows from (64) if we prove that there exists a constant C independent of h such that
any tetrahedron T ∈ Th has three non coplanar edges `i, i = 1, 2, 3 with

|`i| ≤ Chi,T , |`i · ej | ≤ Chj,T , i, j = 1, 2, 3. (66)

In the spirit of Remark A.2, ej refers to the unitary vectors of the local cartesian system of the macro-elements
containing T . This condition is clear on elements contained on isotropic refinement macro-elements (of Type 1
and Type 2 ). So we need to consider elements contained on macro-elements of Type 3 or Type 4. Let T be one
of those elements. We know that T has a vertical edge `3, and has two edges `1 and `2 contained on one or two
planes transversal to the singular edge of the macro-element (introduced in page 4). Then `1, `2 and `3 verify
(66). This is a consequence of the results of [4] (see ineq. (3.2)). �

We also need trace inequalities where in the right hand side the presence of some derivatives is avoided. We
have the following results.

Lemma A.3. Let P be a triangular prism with vertices vi, i = 1, . . . , 6, where the face v1v2v3 is opposite to
the face v4v5v6, and where the edges v1v4, v2v5, and v3v6 are parallel to the x3-axis, see Figure 7. Denote by F
the face v1v2v3. Then for all v ∈W 1,p(P ), p ∈ [1,∞), we have

‖v‖pLp(F ) ≤
Creg
cos γ

· h−1
3

(
‖v‖pLp(P ) + hp3‖∂3v‖pLp(P )

)
,

where h3 is length of the shortest vertical edge, and γ is the angle between the x1x2-plane and the plane containing
the face F . The constant Creg depends only on p and the minimum angle of the face F .

Proof. We can assume v1 = (0, 0, 0) and v4 = (0, 0, h3). Suppose v2 = (a2, b2, c2), v3 = (a3, b3, c3). Let s, t such
that

a2s+ b2t = c2

a3s+ b3t = c3.
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It is clear that there exist such s and t since v1, v2, and v3 do not lay on one line. Then the map f(x̃) = Bx̃
with

B =

 1 0 0
0 1 0
s t 1


sends P̃ to P where P̃ is a prism with three vertical edges and some of its vertices are ṽ1 = (0, 0, 0), ṽ2 =

(a2, b2, 0), ṽ3 = (a3, b3, 0) and ṽ4 = (0, 0, h3). Let F̃ be the face ṽ1ṽ2ṽ3 of P̃ .
Let ṽ be defined by ṽ(x̃) = v(x) if x = Bx̃. Then we have

‖v‖pLp(F ) =
1

cos γ
‖ṽ‖p

Lp(F̃ )
.

Now, if Q̃ is the right prism with vertices ṽ1, . . . , ṽ4, (a2, b2, h3) and (a3, v3, h3), then we have using a trace

inequality on Q̃ and noting that Q̃ ⊂ P̃ that

‖ṽ‖p
Lp(F̃ )

≤ Cph−1
3

(
‖ṽ‖p

Lp(Q̃)
+ hp3‖∂̃3ṽ‖pLp(Q̃)

)
≤ Cph−1

3

(
‖ṽ‖p

Lp(P̃ )
+ hp3‖∂̃3ṽ‖pLp(P̃ )

)
with Cp depending only on p. Therefore, we have

‖v‖pLp(F ) =
Cp

cos γ
h−1

3

(
‖ṽ‖p

Lp(P̃ )
+ hp3‖∂̃3ṽ‖pLp(P̃ )

)
=
Creg
cos γ

h−1
3 |B|

(
‖v‖pLp(P ) + hp3‖∂3v‖pLp(P )

)
where we used that ∂̃3ṽ(x̃) = ∂3v(x). Since |B| = 1 we obtain the desired result. �

Lemma A.4. Let T be an anisotropic element with the node n on the singular edge and let σn be a short edge.
Let Pn ⊂ ST be a parallelogram of maximal area having σn as an edge and another edge on the singular edge,
see Figure 8. And let Fn the face of ST containing Pn. Then |Pn| ≥ C|Fn|, and for all v ∈W 1,1(ST ) we have

‖v‖L1(Pn) ≤ C|Fn||ST |−1
(
‖v‖L1(ST ) + |s1,T |‖∂s1,T v‖L1(ST ) + |s2,T |‖∂s2,T v‖L1(ST )

)
.

where s1,T and s2,T are two short edges of T .

Proof. The inequality |Pn| ≥ C|Fn| follows from our assumptions on the mesh, in particular from the comparable
length of opposite edges of Fn. For proving the estimate choose the coordinate system such that n = (0, 0, 0).

Assume first v is regular. We have

‖v‖L1(Pn) ≤ C

∫ h3,Pn

0

∫ |σn|
0

|v((0, 0, z) + tσn)| dt dz

=

∫ h3,Pn

0

∫
σ(z)

|v| ds dz

where σ(z) is the segment parallel to σn and with the same length and passing through (0, 0, z). If ξ(z) is the
triangle contained in ST having σ(z) as an edge and being parallel to the bottom face of ST , then since we can
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σn = s1,T

s2,T

Fn

σ(z)

ξ(z)

Qn

Figure 8. Illustration of the notation used in Lemma A.4. The dotted lines indicate the prism
Qn, dashed lines the parallelogram Pn while the triangle ξ(z) is hatched. Note that σ(z) =

ξ(z) ∩ Fn.

assume v|ξ(z) is regular (because v is), by the trace inequality (62) we have∫
σ(z)

|v| ≤ C |σn||ξ|

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

where |s1,T | and |s2,T | are the lengths of two small edges of T and |ξ| = |ξ(0)|. So we have

‖v‖L1(Pn) ≤ C
|σn|
|ξ|

∫ h3,Pn

0

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Pn|
|Qn|

∫ h3,Pn

0

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Pn|
|Qn|

∫
Qn

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Pn|
|Qn|

∫
ST

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

where Qn is the prism formed by the union of ξ(z) with z ∈ [0, h3,Pn ] that is contained in ST . Since |Pn| ≤ |Fn|
and, from the assumptions on the mesh, |Qn| ≥ C|ST | we arrive at

‖v‖L1(Pn) ≤ C
|Fn|
|ST |

∫
ST

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|).

If v ∈W 1,1(ST ), let {vk}k be a sequence of C∞ functions converging to v in W 1,1(ST ). For each k we have

‖vk‖L1(Pn) ≤ C|Fn||ST |−1
(
‖vk‖L1(ST ) + |s1,T |‖∂s1,T vk‖L1(ST ) + |s2,T |‖∂s2,T vk‖L1(ST )

)
.

Now, the proof concludes by taking limit as k →∞. �
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