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Abstract

In this paper, we deal with the finite element approximation of a ho-
mogeneous Dirichlet boundary value problem for fractional powers of sym-
metric second–order elliptic operators on a two–dimensional domain Ω. We
employ the diagonalization technique introduced in [Banjai, Melenk, No-
chetto, Otárola, Salgado, Schwab, Foundations of Computational Mathemat-
ics (2019) 19: 901–962], which proposes a semi–discretization in the extended
variable of a truncated Caffarelli–Silvestre extension. This approach decou-
ples the problem into the solution of independent second–order reaction–
diffusion equations in Ω, several of which may become singularly perturbed.
For the case where Ω = (0, 1)2, we propose to approximate all the decoupled
problems by bilinear finite elements over a unique layer adapted, suitably
graded, rectangular mesh, which can be designed independently of the even-
tual singular perturbation parameters. We prove the convergence of the
proposed scheme and show numerical examples confirming the theoretical
results.

Keywords: Non-local operators, Fractional Diffusion, Finite Element
Method, Graded Meshes, Reaction–Diffusion equations, Singularly
Perturbed Problems
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1. Introduction

We are interested in finite element approximations of the Dirichlet prob-
lem for fractional powers of a symmetric second–order elliptic operator. Given
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a domain Ω in R2, a real s ∈ (0, 1), and a function f , the model problem
reads as follows: given f ∈ H−s(Ω), find u ∈ Hs(Ω) solution of

Lsu = f in Ω

u = 0 on ∂Ω,
(1)

with the spaces Hs and its dual H−s to be introduced later, see Section 3.1.
We consider, for simplicity, the operator L of the form

Lv = −∆v + c̄(x)v, (2)

with c̄(x) ∈ L∞(Ω) a non-negative function defined on Ω. More generally,
operators with a diffusion coefficient could also be considered.

The main difficulty in obtaining efficient numerical methods for (1) is that
Ls is a non–local operator [1, 2]. One of the most studied non–local operators
is the fractional Laplacian (−∆)s, subject to s ∈ (0, 1), with homogeneous
Dirichlet boundary conditions, due to its physical applications involving long-
range or anomalous diffusion. For example, it is used in modeling the flow
of certain particles in porous media (see [3]). Caffarelli and Silvestre, in [2],
localize problem (1), for L = −△, by means of a non–uniformly elliptic PDE
posed in one more spatial dimension. They showed that any power s ∈ (0, 1)
of the fractional Laplacian in Rd can be realized as the Dirichlet–to–Neumann
map of an extension to the upper half–space Rd+1

+ , which, in what follows,
we call the local extended problem. This result was expanded by Cabré and
Tan [1] and by Stinga and Torrea [4] to consider bounded domains Ω and
more general operators, thus obtaining an extended problem posed on the
semi-infinite cylinder C := Ω× (0,∞).

Nochetto, Otárola and Salgado in [5], proposed to approximate the solu-
tion u(x) of (1) by taking the trace U(·, 0) on Ω× {0} of an approximation
to the solution U of the local extended problem (see subsection 3.2 for de-
tails). Indeed, they analyzed the extended problem in the framework of
weighted Sobolev spaces, and motivated by the rapid decay of U , they con-
sidered a truncation CY = Ω × [0,Y ] of C and approximated U there by
discretizing with first order tensor product finite elements. Subsequently, in
[6], these authors, together with Banjai, Melenk, and Schwab, extended the
previous results in several directions. In particular, they proposed a novel
diagonalization technique that decouples the degrees of freedom introduced
by a Galerkin (semi–)discretization in the extended variable. This technique
reduces the y–semidiscrete Caffarelli-Silvestre extension to the solution of
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independent second-order reaction-diffusion equations posed on Ω, some of
which are singularly perturbed. By introducing an hp finite element approx-
imation of these reaction-diffusion problems, this decoupling allowed them
to establish exponential convergence for analytic data f without assuming
boundary compatibility (for a comprehensive discussion, see [6, Section 9] ).

This paper is mainly motivated by the observation that singularly per-
turbed reaction–diffusion problems on a square can be almost optimally ap-
proximated in the energy norm by an h version of piecewise bilinear finite
elements using appropriate meshes (graded meshes) designed independently
of the perturbation parameter [7, 8]. Then, we start with the diagonalization
technique from [6], and propose a strategy to design a unique graded mesh
on Ω = (0, 1)2 to approximate the sequence of reaction–diffusion problems
coming from the semi–discretization of the extended problem in the trun-
cated cylinder CY . All these numerical solutions are then combined as in
[6] to obtain an approximation of the solution of (1). Our assumptions on
the right–hand side f are that it is C2(Ω) and it satisfies the compatibility
condition (55), that is, that f vanishes on the vertices of the square.

Our error estimates are linear up to a logarithmic factor in the number of
reaction–diffusion equations to be solved. However, it is important to study
the approximation error in terms of the number of degrees of freedom. In
particular, it follows from Theorem 6.1 that to obtain an error of almost
order O(M−1), we need to solve M reaction-diffusion problems, each of them

having O(M
3
2 ) degrees of freedom. Then, with a total number of O(M

5
2 )

degrees of freedom, we get an accuracy of O(M−1) (up to logarithmic factors).
This is slightly better than the complexity of the h version of the finite
element method for a regular three-dimensional problem. We notice that
the discretization of the M reaction–diffusion problems leads to M linear
systems with matrices of the form µiA1 +A0 and on the right-hand side ζib,
with fixed matrices A0 and A1, and a fixed vector b. The coefficients µi and
ζi are computed at the beginning of the process. Therefore, we believe that
this approach can be combined with suitable parallelization algorithms to
obtain better performance, but we do not delve into this issue in depth in
this work.

It is well known that the standard finite element method on uniform or
quasi–uniform meshes produces poor results for the approximation of singu-
larly perturbed reaction–diffusion problems. In this paper, we will consider
the use of graded meshes that were introduced in [7], which are a kind of
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adapted mesh designed with a priori knowledge of the exact solution. In
Section 2.2 we briefly review other meshes introduced in the literature.

To obtain almost linear convergence in h to the solution of (1), our
approach requires superlinear approximations of each one of the reaction–
diffusion problems. In view of that, in Proposition 5.1, we show that a local
post-processing of the bilinear finite element solution on graded meshes yields
a superconvergent approximation that is almost uniform with respect to the
singular perturbation parameter. We obtain that result as a consequence of
a supercloseness property proved in [8] when the grading parameter defin-
ing the graded meshes is large enough. The technique for obtaining robust
superconvergence results has previously been used in [9], in the case of singu-
larly perturbed convection–diffusion problems. Similar results for singularly
perturbed convection–diffusion or reaction–diffusion problems on Shishkin
meshes were obtained in [10, 11, 12].

The remainder of the paper is structured as follows. Section 2 intro-
duces the notation, followed by a brief discussion on fractional problems and
the finite element approximation of singularly perturbed reaction–diffusion
equations. In Section 3, we introduce the model problem and its discretiza-
tion which is based on the Caffarelli–Silvestre extension. In addition, some
auxiliary results are presented. Section 4 includes estimates of the semi–
discretization error. In Section 5 we deal with the finite element approxima-
tion of singularly perturbed reaction–diffusion equations on graded meshes.
In particular we show how a higher order approximation can be obtained
from the computed solution by a simple local post–processing. Our main re-
sult on the error estimate for the proposed approximation of (1) is presented
in Section 6. Finally, Section 7 contains numerical experiments that confirm
the theoretical results of Sections 5 and 6.

2. Notation and preliminaries

Throughout the paper, we adopt the following notation. For a domain
D, we use standard notation for Lp and Sobolev spaces, as well as their
respective norms and seminorms, namely,

∥u∥Lp(D) :=

(∫
D

|u|p
)1

p

, 1 ≤ p < ∞,

∥u∥L∞(D) := inf {C > 0 : |u(x)| ≤ C a.e.} ,
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∥u∥m,D :=

∑
|α|≤m

∥Dαu∥2L2(D)


1/2

, |u|m,D :=

∑
|α|=m

∥Dαu∥2L2(D)


1/2

.

In particular, ∥u∥0,D denotes the L2-norm of u over D. When D = Ω, and
no confusion can arise, we will write ∥u∥0 instead of ∥u∥0,Ω.

For a rectangle R, Pk(R) and Qk(R) denote the spaces of polynomials of
total degree less than or equal to k and polynomials of degree less than or
equal to k in each variable, respectively, over R.

In addition, C will denote a constant that may depend on the fractional
power s or the discretization parameters σ and η introduced in Subsection
3.4, and which is independent of the mesh sizes and singular parameters in
reaction-diffusion problems. The value of C might change with each occur-
rence. The notation a ≲ b means a ≤ Cb and a ∼ b signifies a ≲ b ≲ a.

2.1. Background of Fractional Laplacian

If the space under consideration is the whole space Rn, the fractional
Laplacian operator (−∆)s is defined for a function in S and s ∈ (0, 1) as [13]

(−∆s)u(x) = C(n, s)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

= C(n, s) lim
ε↘0

∫
CBε(x)

u(x)− u(y)

|x− y|n+2s
dy

(3)

where P.V. means “in the principle value sense” as defined by the latter
equation and C(n, s) is the constant

C(n, s) =

(∫
Rn

1− ζ1
|ζ|n+2s

dζ

)−1

.

An equivalent definition can be given in terms of Fourier transform, see [13,
Section 3]: for a function u ∈ S we have

(−∆s)u(x) = F−1
(
|ξ|2sFu

)
(4)

where F denotes the Fourier transform.
However, there is no unique way to define (−∆)sw for functions w defined

on a bounded domain Ω. One possibility is to suitably extend w to a function
u in the whole space Rn and to equivalently use the definitions (3) or (4).
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In relation to this, [14] considers the integral formulation (3) and restrict it
to functions w supported on Ω. The resulting operator is called the integral
fractional Laplacian and is denoted by (−∆)sIw.

Another possibility is to consider the so–called regional fractional Lapla-
cian (−∆)sRw that is defined by restricting the Riesz integral (3) to Ω. This
operator is known to be the infinitesimal generator of the so–called censored
stable Lévy processes [15, 16].

In this paper we use a third approach, which leads to the spectral fractional
Laplacian and corresponds to the fractional powers of the Dirichlet Laplace
operator in the sense of the spectral theory. Caffarelli–Silvestre’s result [2]
was proved for this operator allowing a localization via a local problem posed
on the semi–infinity cylinder Ω × (0,+∞). Following [6], we exploit this
localization to obtain a numerical approximation of the spectral fractional
Laplacian using suitably graded meshes on Ω.

2.2. Numerical approximation of singularly perturbed reaction-diffusion prob-
lems

A key ingredient in our approach is the robust finite element approxima-
tion of singularly perturbed reaction–diffusion equations on Ω = (0, 1)2 com-
ing from the diagonalization process applied to the local extended problem.
It is well known that the standard finite element methods for singularly per-
turbed problems produce very poor results when uniform or quasi–uniform
meshes are used unless they are sufficiently refined. Consequently, these
kinds of meshes are not useful in practical applications, and therefore several
alternatives of appropriately adapted meshes have been considered in many
papers. Very well known are the Shishkin’s type meshes (see [10, 11]) con-
sisting of piecewise uniform meshes with a similar number of elements close
to and away from the layers. Transition points are suitably introduced to
separate fine and coarse zones in the mesh. Shishkin meshes were also used to
approximate interior layers in convection–diffusion–reaction equations with
non–smooth coefficients, see, for example [17]. Other very used meshes are
Bakhvalov meshes [10] which are generated by equidistributing a monitor
function related to the exponential boundary layer. This kind of mesh has
been recently used in [18] for the approximation of an integral boundary value
problem of non–linear singularly perturbed differential equations where it is
reported to produce better error estimates than those obtained for Shishkin
meshes. Furthermore, a curvature–based monitor function is used in [19] to
effectively approximate a stationary convection–reaction–diffusion equation,
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and the authors have successfully applied a r–refinement procedure for adapt-
ing the mesh in time in the non–stationary case. We also mention [20] where
the equidistribution of an error monitor function was used to generate adap-
tive grids in time to obtain a uniformly convergent scheme for a parabolic
system of reaction–diffusion equations.

In this paper, we consider graded meshes as introduced in [7] for the finite
element approximation of singularly perturbed reaction–diffusion equations
with homogeneous Dirichlet boundary conditions. There, it has been proved
that to obtain an expected bound for the error in the energy norm, these
meshes can be defined independently of the singular perturbation parameter
ε ([7, Corollary 4.5]). We exploit this property here, since it allows us to ap-
proximate, using a single appropriately defined finite element mesh in space,
all the decoupled reaction–diffusion problems that appear when the diago-
nalization technique of [6] is applied to the approximation of problem (1).

3. The model problem

In this Section we firstly introduce the fractional powers Ls and the
Caffarelli–Silvestre extension, and secondly we describe in detail our pro-
posed discretization, which is based on the diagonalization technique intro-
duced in [6].

3.1. Fractional Powers of Elliptic Operators

The power Ls, as in [6, 5], is defined following the spectral theory. Con-
sider the countable collection of eigenpairs {λk, φk}k∈N ⊂ R+×H1

0 (Ω), of the
problem

aΩ(φ, v) = λ(φ, v)L2(Ω) ∀v ∈ H1
0 (Ω) (5)

where aΩ(·, ·) is the inner product on H1
0 (Ω) induced by L given by

aΩ(w, v) =

∫
Ω

(∇w · ∇v + cwv) dx′ (6)

with real eigenvalues λk enumerated in increasing order, counting multiplic-
ities. It is assumed that {φk}k∈N is an orthonormal basis of L2(Ω) and an
orthogonal basis of (H1

0 (Ω), aΩ(·, ·)). Then, for s ≥ 0, we introduce the
spaces

Hs(Ω) :=

{
w =

∞∑
k=1

wkφk : ∥w∥2Hs(Ω) =
∞∑
k=1

λs
kw

2
k < ∞

}
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while H−s(Ω) denotes the dual space of Hs(Ω).
It is known that for functions w =

∑
k wkφk ∈ H1(Ω), the operator

L : H1(Ω) → H−1(Ω) takes the form Lw =
∑

k λkwkφk. Then, for s ∈ (0, 1)
and w =

∑
k wkφk ∈ Hs(Ω), the operator Ls : Hs(Ω) → H−s(Ω) is naturally

defined by

Lsw =
∞∑
k=1

λs
kwkφk.

3.2. The local extended problem

To achieve an effective computational discretization scheme, following
[6], we consider a strategy proposed by Caffarelli and Silvestre [2], and sub-
sequently extended by Cabré and Tan [1] and Stinga and Torrea [4] for
bounded domains Ω, to localize it. This strategy involves solving the follow-
ing singular elliptic boundary value problem posed on the extended cylinder
C = Ω× (0,+∞):

−div (yα∇U) + c̄(x)yαU = 0 in C
U = 0 on ∂LC

∂ναU = dsf on Ω× {0}
(7)

where ∂LC := ∂Ω× (0,∞) is the lateral boundary of C, ds := 21−2s Γ(1−s)
Γ(s)

> 0

is a normalization constant and α := 1−2s ∈ (−1, 1). The conormal exterior
derivative of U at Ω× {0} is defined by

∂ναU = − lim
y→0+

yα∂yU . (8)

The limit in (8) is understood in the distributional sense [1, 2].
In order to analyze the problem (7) we need to introduce additional

spaces. Throughout the text, we denote x = (x′, y) ∈ C with x′ ∈ Ω and
y > 0. If D ⊂ Rn, let x = (x′, y) ∈ D where y denotes the last variable in
Rn, we define L2(yα, D) as the Lebesgue space for the measure |y|α dx and
the weighted Sobolev space

H1(yα, D) =
{
w ∈ L2(yα, D) : |∇w| ∈ L2(yα, D)

}
where ∇w is the gradient in weak sense of w (since x = (x′, y) here, we have

∇ =
(
∇x′ , ∂

∂y

)
). We equip H1(yα, D) with the norm

||w||H1(yα,D) =
(
||w||2L2(yα,D) + ||∇w||2L2(yα,D)

)1
2
. (9)
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Define the weighted Sobolev space

◦
H1(yα, C) =

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
(10)

and the bilinear form aC :
◦
H1(yα, C)×

◦
H1(yα, C) → R by

aC(v, w) =

∫
C
yα(∇v · ∇w + cvw) dx′ dy. (11)

It can be proven as a consequence of a Poincaré’s inequality that aC(·, ·)
is continuous and coercive. Consequently, it induces an inner product on
◦
H1(yα, C) and the energy norm ∥ · ∥C:

∥v∥2C := aC(v, v) ∼ ∥∇v∥2L2(yα,C). (12)

The weak formulation of (7) reads as follows: find U ∈
◦
H1(yα, C) such that

aC(U ,V) = ds⟨f, tr V⟩ ∀V ∈
◦
H1(yα, C), (13)

where ⟨·, ·⟩ denotes the duality pairing in L2(Ω) and trV is the trace V|Ω×{0}.
The connection between both problems follows from this fundamental

result (see [1, Proposition 2.2] and [4, Theorem 1.1]): given f ∈ H−s(Ω), let

u ∈ Hs(Ω) be the solution of (1). If U ∈
◦
H1(yα, C) solves (7) then

u = trU and dsLsu = ∂ναU in Ω.

3.3. Semi–discretization of the extended problem

Let Y > 0 andM ∈ N. Given a partition GM of [0,Y ] intoM subintervals,
we will define in this subsection a semidiscrete approximation UM of the
solution U of (13), with UM supported on the truncated cylinder CY :=
Ω× (0,Y).

Let S1
{Y}
(
(0,Y),GM

)
be the space of piecewise linear functions on GM

that vanish at y = Y . We consider the space

VM = H1
0 (Ω)⊗ S1

{Y}
(
(0,Y),GM

)
.

Functions in VM can be extended by 0 to the entire cylinder C and thus we

can consider VM as a subspace of
◦
H1(yα, C), that is, VM ⊂

◦
H1(yα, C). We
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can obtain the approximation UM as the solution of the semidiscrete problem:
find UM ∈ VM such that

aC(UM ,V) = ds⟨f, trV⟩ ∀V ∈ VM . (14)

Let {(µi, vi)}Mi=1 ⊂ R × S1
{Y}
(
(0,Y),GM

)
\ {0} be the set of eigenpairs

defined by

µi

∫ Y

0

yαv′i(y)w
′(y) dy =

∫ Y

0

yαvi(y)w(y) dy ∀w ∈ S1
{Y}
(
(0,Y),GM

)
with {vi} normalized such that∫ Y

0

yαv′i(y)v
′
j(y) dy = δij,

∫ Y

0

yαvi(y)vj(y) dy = µiδij.

Then it can be easily verified that we can write

UM(x′, y) =
M∑
i=1

Ui(x
′)vi(y) (15)

with Ui ∈ H1
0 (Ω), i = 1, . . . ,M being the solutions of the problems

µi (∇Ui,∇V ) + ((1 + c̄(x))Ui, V ) = dsvi(0)⟨f, V ⟩ ∀V ∈ H1
0 (Ω). (16)

Problems (16) are of reaction–diffusion type, and they become singularly
perturbed when their diffusion coefficients, the eigenvalues µi, are small. The
magnitude of these eigenvalues depends on the partition GM . In particular,
for the partition introduced in the next section we have the following upper
and lower bounds: for i = 1, . . . ,M it holds

µi ≤ Y2(1− α2)−1, (17)

and
µi ≳ (logM)−ασ l2min. (18)

Here, lmin denotes the minimal length of the intervals in GM , and the constant
involved depends only on s. Estimates (17) follow from [6, Lemma 18] while
we refer to Remark 3.3 later on for a proof of (18). Thus, if lmin is small,
we see that a number of the reaction–diffusion problems (16) may become
singularly perturbed.
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3.4. The full discretization

In this subsection, we introduce our finite element approximation based
on the semi–discretization previously introduced. Now we restrict ourselves
to the case Ω = (0, 1)2. Let σ be a parameter satisfying

1− s < σ < 1. (19)

Let M ∈ N and Y = c logM , with the constant c to be chosen later. We
then define the partition GM = {Ii}Mi=1 in [0,Y ], where Ii = [yi−1, yi] with

yi = Y
(

i

M

) 1
1−σ

, i = 0, . . . ,M. (20)

A discrete approximation UM,N of UM defined in (15) is constructed by
means of finite element discretizations of the problems (16). Let N ∈ N. We
introduce a graded mesh TN of Ω obtained as a tensor product of partitions
of the interval [0, 1] into 2N subintervals. Given a parameter η satisfying

3

4
≤ η < 1, (21)

let ξ0, ξ1, . . . , ξN be the grid points on the interval [0, 1
2
] given by

ξi =
1

2

(
i

N

) 1
1−η

, i = 0, . . . , N. (22)

This partition is extended to a grid {ξ0, ξ1, . . . , ξN , . . . , ξ2N} of [0, 1] by setting
ξi = 1 − ξ2N−i for i = N + 1, . . . , 2N . For 1 ≤ i, j ≤ 2N , let Rij =
[ξi−1, ξi] × [ξj−1, ξj]. Then we obtain a graded mesh TN = {Rij}2Ni,j=1 of Ω.
Additionally, we set hi = ξi − ξi−1.

Remark 3.1. The intervals Ii, i = 2, . . . ,M , of the partition GM , satisfy

|Ii| ≤ CY 1

M
yσ = C(logM)

1

M
yσ, ∀y ∈ Ii, (23)

with a constant C depending only on s.
Indeed, with i ≥ 2, for some ζ ∈ (i− 1, i) we have

yi − yi−1 =

[(
i

M

) 1
1−σ

−
(
i− 1

M

) 1
1−σ

]
Y

=
1

1− σ

(
ζ

M

) σ
1−σ 1

M
Y .
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But (
ζ

M

) σ
1−σ

=

(
i− 1

M

)σ (
ζ

i− 1

) σ
1−σ
(

M

i− 1

)− σ2

1−σ

.

Then, (23) follows from Y = c logM ,(
ζ

i− 1

) σ
1−σ

≤ 2
σ

1−σ ,

(
M

i− 1

)− σ2

1−σ

≤ 1

and (
i− 1

M

)σ

≤ yσ ∀y ∈ Ii.

Remark 3.2. For i ≥ 2 we also have

y ≤ C (logM)σ z ∀y, z ∈ Ii. (24)

Indeed, we have from (23) that

yi ≤ yi−1 + C (logM)
1

M
yσi−1.

Since yi−1 ≥ y1 = Y
(

1
M

) 1
1−σ , and then yσ−1

i−1 ≤ c(logM)σ−1M , we obtain

yi ≤ yi−1 (1 + C (logM)σ)

which implies (24).

Associated with TN , we introduce the standard piecewise bilinear finite
element space

VN = {v ∈ H1
0 (Ω) : v|Rij

∈ Q1(Rij), 1 ≤ i, j ≤ 2N}, (25)

where Q1(R) denotes the space of bilinear functions on the rectangle R. Now
we can define Ui,N , i = 1, . . . ,M , as the solutions of problems: find Ui,N ∈ VN

such that

µi (∇Ui,N ,∇V ) + ((1 + c̄(x))Ui,N , V ) = dsvi(0)⟨f, V ⟩ ∀V ∈ VN . (26)

For each Ui,N we will define in Section 5 a post–processed U∗
i,N with improved

approximation properties. Then, similar to (15) we define

UM,N(x
′, y) =

M∑
i=1

U∗
i,N(x

′)vi(y), (27)
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and finally, the approximation of u is given by

uM,N(x
′) = tr (UM,N(x

′, y)) =
M∑
i=1

U∗
i,N(x

′)vi(0). (28)

Remark 3.3. With the definitions introduced in this subsection, we can prove
(18). Using a standard rescaling argument y = |I1|ŷ to map intervals [0, 1]
onto I1, and the equivalence of norms for linear functions on I1, we have for
the eigenfunctions vi (defined in Subsection 3.3)

∥v′i∥L2(yα,I1) ∼ |I1|−1∥vi∥L2(yα,I1).

Using another scaling argument and the equivalence (24) on interval Ii
for i ≥ 2, we have

∥v′i∥L2(yα,Ii) ∼ (logM)
ασ
2 |Ii|−1∥vi∥L2(yα,Ii).

Therefore, by squaring and adding the previous inequalities, we obtain

µi = ∥vi∥2L2(yα,(0,Y)) ≥ C (logM)−ασ (min |Ii|)2 ∥v′i∥2L2(yα,Ii)

and taking into account that ∥v′i∥L2(yα,Ii) = 1 and min |Ii| = |I1|, we have

µi = ∥vi∥2L2(yα,(0,Y)) ≥ C (logM)−ασ |I1|2

which proves (18).

Remark 3.4. The factor vi(0) which appears on the right-hand side of the
problem (16) and its discretization (26), can be bounded by following [6,
Lemma 17]. Taking into account that v(Y) = 0 and ∥v′i∥L2(yα,(0,Y)) = 1 we
have

|vi(0)| =
∣∣∣∣∫ Y

0

v′(y) dy

∣∣∣∣ = ∣∣∣∣∫ Y

0

y−
α
2 y

α
2 v′(y) dy

∣∣∣∣
≤ Y 1−α

2

(1− α)
1
2

≤ C (logM)
1−α
2

with the constant C depending on s and independent of M .
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Remark 3.5. Similarly to Remarks 3.1 and 3.2, for all Rij ∈ TN , we can
prove that

hi ≤ C
1

N
xη
1, hj ≤ C

1

N
xη
2, ∀(x1, x2) ∈ Rij (29)

and
x1 ≤ Cw1, x2 ≤ Cw2, ∀(x1, x2), (w1, w2) ∈ Rij. (30)

On the other hand it is easy to check that

hi

hi+1

≤ C, ∀i = 0, . . . , 2N − 1. (31)

Here, C is a constant depending only on η.

3.5. Some preliminaries for the error analysis

The error estimate starts with the trace inequality (see [6, Subsection 2.2])

∥u− uM,N∥Hs(Ω) ≤ Ctr∥U − UM,N∥C,

and then, by the triangle inequality, we have

∥u− uM,N∥Hs(Ω) ≤ Ctr (∥U − UM∥C + ∥UM − UM,N∥C) . (32)

In Section 4 we will obtain the estimate

∥U − UM∥C ≤ C (logM)m
1

M
∥f∥0

with an exponent m to be defined later.
On the other hand, since

UM(x′, y)− UM,N(x
′, y) =

M∑
i=1

(
Ui(x

′, y)− U∗
i,N(x

′, y)
)
vi(y)

we have, following [6, eq. (6.5)], that

∥UM − UM,N∥2C =
M∑
i=1

∥Ui − U∗
i,N∥2µi,Ω

, (33)
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where the norm ∥ · ∥µi,Ω is the energy norm associated with problem (26):

∥v∥2µi,Ω
= ∥v∥2µi

:= µi ∥∇v∥20 + ∥(1 + c̄(x))
1
2v∥20.

We observe that, in order to obtain a linear order of convergence for our
discretization, we require superlinear estimates for the approximations of the
(singularly perturbed) reaction–diffusion problems defining Ui. In Section 5,
we will see that this can be achieved if the parameter η, defining the graded
meshes, satisfies (21).

4. Error estimate in the extended domain

In this section, we estimate the semi–discretization error ∥U − UM∥C. In
order to do that, we need to define an interpolation operator for functions in
C2([0,Y ], L2(Ω)).

Given a Sobolev space X, following [6], we consider a piecewise linear
interpolation operator π1

y,{Y} defined over a grid GM on [0,Y ] for functions

v ∈ C2([0,Y ], X). On the interval I1, π
1
y,{Y}v is defined by interpolating v at

points y1/2 and y1; on intervals Ii with 1 < i < M , the interpolation is at
points yi−1 and yi; and finally, on IM it interpolates at yM−1 and is enforced

to vanish at yM ,
(
π1
y,{Y}v

)
(yM) = 0.

Let
ωθ,γ(y) = yθeγy.

We will write yα and ωα,0(y) interchangeably. For a function v ∈ L2(I,X),
where X is a Hilbert space and I is a real interval, we introduce the notation

∥v∥L2(ωθ,γ ,I;X) =

(∫
I

ωθ,γ(y)∥v(y)∥2X dy

) 1
2

.

When there is no confusion, we will omit the space X writing

∥v∥L2(ωθ,γ ,I)
= ∥v∥L2(ωθ,γ ,I;X) .

For a function V(x′, y), with x′ ∈ Ω and y ∈ I, such that for each y it
holds V(·, y) ∈ X, we write

∥V∥L2(ωθ,γ ,Ω×I) :=

(∫
I

ωθ,γ(y)∥V(·, y)∥2X dy

) 1
2

.

15



We need interpolation error estimates for π1
y,{Y}. More precisely, we have

the classical local estimates∥∥v − π1
y,{Y}v

∥∥
L2(ω0,0,Ii)

≤ C|Ii| ∥v′∥L2(ω0,0,Ii)∥∥(v − π1
y,{Y}v)

′∥∥
L2(ω0,0,Ii)

≤ C|Ii| ∥v′′∥L2(ω0,0,Ii)

(34)

for each interval Ii, for functions v ∈ H1(I,X) and v ∈ H2(I,X), respec-
tively. On the interval I1, we will use the weighted error estimates∥∥v − π1

y,{Y}v
∥∥
L2(ωα,0,I1)

≤ C|I1|β ∥v′∥L2(ωα+2−2β,0,I1)∥∥(v − π1
y,{Y}v)

′∥∥
L2(ωα,0,I1)

≤ C|Ii|β ∥v′′∥L2(ωα+2−2β,0,I1)

(35)

which are proven in [6, eqs. (A.6) and (A.4)].
In view of [6, eq. (6.10)], U can be seen as a function in C2([0,Y ], L2(Ω))∩

C2([0,Y ], H1
0 (Ω)) and thus it makes sense to consider π1

y,{Y}U .
In the proof of the next result, we will use the following estimates for U

taken from [6, Theorem 1]. Let γ be a fixed positive parameter satisfying
γ < 2

√
λ1, where λ1 is the first eigenvalue of the problem (5). We have

∥∂yU∥L2(ωα−2ν̃,γ ,C) ≤ C∥f∥H−s+ν̃(Ω)

∥∂2
yU∥L2(ωα+2−2ν̃,γ ,C) ≤ C∥f∥H−s+ν̃(Ω)

∥∂y∇x′U∥L2(ωα+2−2ν,γ ,C) ≤ C∥f∥H−s+ν(Ω)

(36)

with 0 ≤ ν̃ < s = (1− α)/2 and 0 ≤ ν < 1 + s.

Proposition 4.1. Assume f ∈ L2(Ω). We consider the approximation UM

defined by (14), supported on the truncated cylinder CY , obtained using the
grid GM of [0,Y ] defined by (20), where Y = c logM with c > 3

γ
. Then it

follows that

∥U − UM∥C ≤ C(logM)
3+ασ

2
1

M
∥f∥0, (37)

where C is a constant depending only on s.

Proof. From the Galerkin orthogonality, we have

∥U − UM∥C ≤
∥∥U − π1

y,{Y}U
∥∥
C
. (38)

It follows from the Poincaré’s inequality [6, ineq. (2.7)] for functions in
◦
H1 (yα,Ω) that the seminorm ∥∇(·)∥L2(yα,C) is equivalent to the norm ∥ · ∥C.
Then

∥U − UM∥C ≲
∥∥∇ (U − π1

y,{Y}U
)∥∥

L2(yα,C)
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Since π1
y,{Y}U vanishes outside CY we have∥∥∇ (U − π1

y,{Y}U
)∥∥

L2(yα,C)
≤
∥∥∇ (U − π1

y,{Y}U
)∥∥

L2(yα,CY )
+ ∥∇U∥L2(yα,C\CY ) .

(39)
From [6, eq. (5.8)] we have that the second term on the right hand side

of (39) is exponentially small in Y , in fact,

∥∇U∥L2(yα,C\CY ) ≲ e−γY/2∥f∥H−s(Ω).

Taking into account that
Y = c logM

with c ≥ 2/γ we obtain

∥∇U∥L2(yα,C\CY ) ≲
1

M
∥f∥H−s(Ω). (40)

Now we consider the first term of the right hand side of (39). We have

∥∇(U − π1
y,{Y}U)∥L2(yα,CY )

≤ ∥∇x′U − π1
y,{Y}∇x′U∥L2(yα,CY ) + ∥∂y(U − π1

y,{Y}U)∥L2(yα,CY )

=: A+B, (41)

where we have used that ∇x′

(
π1
y,{Y}U

)
= π1

y,{Y} (∇x′U).
We can estimate A as follows. On I1, using the first inequality of (35)

with v = ∇x′U we have

∥∇x′U − π1
y,{Y}∇x′U∥L2(yα,I1) ≤ C|I1|β∥∂y∇x′U∥L2(ωα+2−2β,0,I1)

for β ≥ 0. Taking β = 1− σ, and since

|I1| = c log(M)

(
1

M

) 1
1−σ

,

we obtain

∥∇x′U − π1
y,{Y}∇x′U∥L2(yα,I1) ≤ C(logM)1−σ 1

M
∥∂y∇x′U∥L2(ωα+2σ,0,I1). (42)

On intervals Ii, i = 2, . . . ,M−1, using the first inequality of (34) we have

∥∇x′U − π1
y,{Y}∇x′U∥0,Ii ≤ C|Ii|∥∂y∇x′U∥0,Ii ,
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and, taking into account (23) and (24), we obtain

∥∇x′U − π1
y,{Y}∇x′U∥L2(yα,Ii) ≤ C (logM)1+

σα
2

1

M
∥∂y∇x′U∥L2(ωα+2σ,0,Ii).

Finally, for IM , if π1
y is the interpolation operator on the grid GM defined like

π1
y,{Y} but without imposing π1

y(·)(yM) = 0 (that is, π1
y(v)(yM) = v(yM)), we

have∥∥∇x′U − π1
y,{Y}∇x′U

∥∥
L2(yα,IM )

≤
∥∥∇x′U − π1

y∇x′U
∥∥
L2(yα,IM )

+
∥∥(π1

y − π1
y,{Y}

)
∇x′U

∥∥
L2(yα,IM )

(43)

The first term can be bounded in the same way as for Ii, 2 ≤ i ≤ M − 1,
obtaining∥∥∇x′U − π1

y∇x′U
∥∥
L2(yα,IM )

≤ C (logM)1+
σα
2

1

M
∥∂y∇x′U∥L2(ωα+2σ,0,IM ),

and for the second one we have∥∥(π1
y − π1

y,{Y}
)
∇x′U

∥∥
L2(yα,IM )

≤ C (logM)
α
2 |IM | 12∥∇x′U(·,Y)∥L2(Ω),

since π1
y − π1

y,{Y} is a linear function in the variable y with values in L2(Ω)

vanishing at y = yM−1. Inserting the previous inequalities into (43) we obtain

∥∥∇x′U − π1
y,{Y}∇x′U

∥∥
L2(yα,IM )

≤ C (logM)1+
σα
2

1

M
∥∂y∇x′U∥L2(ωα+2σ,0,IM )

+ (logM)
α
2 |IM | 12∥∇x′U(·,Y)∥0. (44)

Using [6, eq. (A.10) and Lemma 16], we have

∥∇x′U(·,Y)∥0 ≤ Y−α
2
−1+βe−Yγ/2∥∂y∇x′U∥L2(ωα+2−2β,γ ,C\CY )

and since |IM | ≤ C(logM) 1
M
Yσ it results

(logM)
α
2 |IM | 12∥∇x′U(·,Y)∥0 ≤

C (logM)
1+α
2

(
1

M

) 1
2

Y−α
2
−1+β+σ

2 e−Yγ/2∥∂y∇x′U∥L2(ωα+2−2β,γ ,C\CY ). (45)
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Taking again β = 1− σ and since

max

{
1− σ, 1 +

σα

2
,
1 + α

2

}
= 1 +

σα

2

we have from inequalities (42)-(45) that

A ≤ C(logM)1+
σα
2

[
1

M
∥∂y∇x′U∥L2(ωα+2σ,0,CY )

+

(
1

M

) 1
2

Y−α+σ
2 e−Yγ/2∥∂y∇x′U∥L2(ωα+2σ,γ ,C\CY )

]
. (46)

It remains to estimate the term B in equation (41). Using the second inter-
polation error estimate from (35) it follows

∥∂y(U − π1
y,{Y}U)∥L2(yα,CY ) ≤ |I1|β∥∂2

yU∥L2(ωα+2−2β,0,I1)

≤ C(logM)1−σ 1
M
∥∂2

yU∥L2(ωα+2σ,0,I1)

(47)

if β = 1−σ. On intervals Ii, i = 2, . . . ,M − 1 using again the standard error
estimates (34) and properties (23)–(24) of GM , we obtain

∥∂y(U − π1
y,{Y}U)∥L2(yα,Ii) ≤ C (logM)1+

σα
2

1

M
∥∂2

yU∥L2(ωα+2σ,0,Ii). (48)

For the interval IM we have again (recall the definition of π1
Y before equation

(43))

∥∂y(U − π1
y,{Y}U)∥L2(yα,IM ) ≤ ∥∂y(U − π1

yU)∥L2(yα,IM )+∥∥∂y [(π1
y − π1

y,{Y}
)
U
]∥∥

L2(yα,IM )

≤ C (logM)1+
σα
2

1

M
∥∂2

yU∥L2(ωα+2σ,0,IM )+

C (logM)
α
2 |IM |− 1

2∥U(·,Y)∥0,Ω.
Then, since |IM | ≳ 1

M
, and taking again [6, eq. (A.10) and Lemma 16] into

account, it follows

(logM)
α
2 |IM |− 1

2∥U(·,Y)∥0 ≤

(logM)
α
2

(
1

M

)− 1
2

Y−α
2
−1+βe−Yγ/2∥∂yU∥L2(ωα+2−2β,γ ,C\CY ). (49)
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Hence, from inequalities (47)–(49) with β = 1− σ we obtain

B ≤ C (logM)1+
σα
2

1

M
∥∂2

yU∥L2(ωα+2σ,0,CY )+

C (logM)
α
2

(
1

M

)− 1
2

Y−α
2
−σe−Yγ/2∥∂yU∥L2(ωα+2σ,γ ,C\CY ). (50)

Inserting (46) and (50) into (41) we have

∥∇(U − π1
y,{Y}U)∥L2(yα,CY ) ≤

C(logM)1+
ασ
2

[
1

M
∥∂y∇x′U∥L2(ωα+2σ,0,CY ) +

1

M
∥∂2

yU∥L2(ωα+2σ,0,CY )+(
1

M

) 1
2

Y−α+σ
2 e−Yγ/2∥∂y∇x′U∥L2(ωα+2σ,γ ,C\CY )+(

1

M

)− 1
2

Y−α
2
−σe−Yγ/2∥∂yU∥ωα+2σ,γ ,C\CY

]
(51)

Since we take σ verifying (19), that is

α + 1

2
< σ < 1

then we have from (36) that

∥∂2
yU∥L2(ωα+2σ,0,CY ) ≲ ∥f∥H−s+1−σ(Ω) ≤ ∥f∥0,

∥∂y∇x′U∥L2(ωα+2σ,γ ,C\CY ) ≲ ∥f∥H−s+1−σ(Ω) ≤ ∥f∥0,
∥∂y∇x′U∥L2(ωα+2σ,0,CY ) ≲ ∥f∥H−s+1−σ(Ω) ≤ ∥f∥0,

and since for a fixed γ0 > 0 it holds y2σ ≤ Ceγ0y for all y ≥ 1 we also have

∥∂yU∥2L2(ωα+2σ,γ ,C\CY ) =

∫ ∞

Y
∥∂yU∥20 yα+2σeγy dy

≲
∫ ∞

Y
∥∂yU∥20 yαe(γ+γ0)y dy ≲ ∥f∥2H−s(Ω) ≤ ∥f∥20

20



if γ0 is taken such that 0 ≤ γ + γ0 < 2
√
λ1. Then from (51) we have

∥∇(U − π1
y,{Y}U)∥L2(yα,CY ) ≤ C(logM)1+

ασ
2

{
1

M
+

(
1

M

) 1
2

Y−α+σ
2 e−Yγ/2

+

(
1

M

)− 1
2

Y−α
2
−σe−Yγ/2

}
∥f∥0.

Now, we need to consider that

Y = c logM

with c > 3
γ
in order to obtain

∥∇(U − π1
y,{Y}U)∥L2(yα,CY ) ≤ C(logM)

3+ασ
2

1

M
∥f∥0. (52)

Inequality (39), together with (40) and (52), give the result.

5. Superconvergent approximations of a reaction–diffusion equa-
tion using graded meshes

The goal of this section is to prove superconvergence results for the stan-
dard Q1 finite element approximation of the reaction–diffusion model prob-
lem introduced below when appropriate graded meshes are used.

We consider the model problem

−ε2∆w + b(x)w = f in Ω

w = 0 on ∂Ω
(53)

where Ω = (0, 1)2, 0 < ε ≪ 1 is a small positive parameter, and

b(x1, x2) ≥ 1 in Ω. (54)

5.1. Auxiliary results

We will assume that f ∈ C2([0, 1]2) and that it satisfies the compatibility
conditions

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0. (55)

It is known that under these hypotheses, the exact solution of problem
(53) satisfies w ∈ C4(Ω) ∩ C2(Ω). Moreover, we have the following pointwise
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estimates for w and its derivatives (see [21, Lemma 4.1], [22]): if 0 ≤ k ≤ 4
then ∣∣∣∣∂kw

∂xk
1

(x1, x2)

∣∣∣∣ ≤ C
(
1 + ε−ke−x1/ε + ε−ke−(1−x1)/ε

)
, (56)∣∣∣∣∂kw

∂xk
2

(x1, x2)

∣∣∣∣ ≤ C
(
1 + ε−ke−x2/ε + ε−ke−(1−x2)/ε

)
. (57)

We also have some weighted a priori estimates for w which are uniform in
the perturbation parameter ε (see [8, Lemma 3.1]): let d(t) = min{t, 1 − t}
be the distance to the boundary function on the interval [0, 1], then

(i) if 0 ≤ k ≤ 4, α + β ≥ k − 1
2
, α ≥ 0, β > −1

2
, then

εα
∥∥∥∥d(x1)

β ∂
kw

∂xk
1

∥∥∥∥
0

≤ C, εα
∥∥∥∥d(x2)

β ∂
kw

∂xk
2

∥∥∥∥
0

≤ C, (58)

(ii) if α + β ≥ 5
2
, α ≥ 3

4
, β > 1

2
, then

εα
∥∥∥∥d(x2)

β ∂3w

∂x1∂x2
2

∥∥∥∥
0

≤ C. (59)

5.2. Finite element approximation on graded meshes

The standard weak formulation of problem (53) is: find w ∈ H1
0 (Ω) such

that

B(w, v) =
∫
Ω

fv dx ∀v ∈ H1
0 (Ω),

where the bilinear form B is defined as

B(w, v) =
∫
Ω

(ε2∇w · ∇v + bwv) dx.

For a domain D, we will work with the ε-weighted H1-norm (referred as
ε-norm in what follows) defined by

∥v∥2ε2,D := ε2∥∇v∥20,D + ∥v∥20,D.

When D = Ω, for simplicity, we drop the subscript Ω.
It is well known that under the hypothesis (54), the bilinear form B is

uniformly continuous and coercive in the ε-norm, in particular

∥v∥2ε2 ≤ B(v, v) ∀v ∈ H1
0 (Ω).
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In [7], an analysis for the approximation of problem (53) by bilinear finite
elements using appropriate graded meshes was developed. Almost optimal
convergence, uniform with respect to ε, was proven in that paper. The
graded meshes used in [7], which depend on a parameter η, with 1

2
< η <

1, are constructed independently of the perturbation parameter ε. In [8],
under the stronger restriction 3

4
≤ η < 1, supercloseness results for the same

scheme considered in [7] were obtained. Specifically, the difference between
the finite element solution and the Lagrange interpolant of the exact solution,
in the ε-norm, is of higher order than the error itself. The constants in such
estimates depend only weakly on the singular perturbation parameter. In
this section, our aim is, starting from these known results, to obtain a higher
order approximation by a local post-processing of the computed solution.

On Ω = (0, 1)2, for N ∈ N, h = 1/N , and a given grading parameter η
we consider the mesh TN introduced in Subsection 3.4. Associated with TN ,
we introduce the piecewise bilinear finite element space VN defined by (25),
and the finite element approximation wN ∈ VN that solves

B(wN , v) =

∫
Ω

fv dx ∀v ∈ VN . (60)

5.3. A higher order approximation by post–processing

As is known, the supercloseness estimate (see [8, Theorem 4.7]):

∥wN − wI∥ε2 ≤ Ch2 log
1
2 (1

ε
), (61)

where wI ∈ VN is the Lagrange interpolant of the exact solution w, can be
used to improve the numerical approximation by a local post–processing.

Remark 5.1. We note that the graded meshes over Ω used in [8] have been
defined differently than in Subsection 3.4. However, the only properties of
the mesh involved in the proof of inequality (61) are those given in Remark
3.5. Therefore, the inequality remains valid even with our definition of the
meshes.

We will define the post–processed w∗
N of the finite element solution wN

following [9, 23, 11]. We repeat the construction given in those papers for
the sake of completeness. Since TN is a tensor product mesh of a partition
of [0, 1] with 2N subintervals, it can be viewed as a refinement of the coarser
mesh SN , formed by elements Sij with 1 ≤ i, j ≤ N as described in Figure 1.
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R2i−1,2 j−1 R2i,2 j−1

R2i−1,2 j R2i,2 j

h2i−1

Hi

h2i

h2 j−1

h2 j

H j

Figure 1: Element Sij

Let I2 be the biquadratic interpolation operator over the mesh SN , which for
a function v ∈ C(Ω), is defined on each Sij as the Lagrange interpolant over
the nine nodes indicated in Figure 1, i.e., the vertices of the four elements of
the finer mesh TN contained within Sij. Consider

w∗
N := I2wN .

Then we want to show that w∗
N is a second order approximation of w in the

ε-norm.
We will need the following estimates for the operator I2.

Lemma 5.1. There exists a constant C such that, for any v ∈ VN , and
Sij ∈ SN we have

∥I2v∥L∞(Sij) ≤ C∥v∥L∞(Sij). (62)

Proof. For (x1, x2) ∈ Sij and α, β ∈ {1, 2, 3} fixed, we define

φαβ(x1, x2) =
∏
k ̸=α

x1 − xk
1

xα
1 − xk

1

∏
ℓ̸=β

x2 − xℓ
2

xβ
2 − xℓ

2

(63)

where (xk
1, x

ℓ
2), with k, ℓ = 1, 2, 3, are the interpolation nodes on Sij. Then,

we can write
I2v =

∑
α,β=1,2,3

v(xα
1 , x

β
2 )φαβ, on Sij. (64)
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Setting Hi and Hj as the lengths of the element Sij along the directions of
the x1 and x2 axes respectively, as in Figure 1, and hx1

min := min{h2i−1, h2i},
hx2
min := min{h2j−1, h2j}, we have that |x1 − xk

1| ≤ Hi, |x2 − xℓ
2| ≤ Hj,

|xα
1 − xk

1| ≥ hx1
min and |xβ

2 − xℓ
2| ≥ hx2

min.
Therefore, we obtain

∥φαβ∥L∞(Sij)
≤ H2

i H
2
j

(hx1
min)

2(hx2
min)

2
≤ C,

where in the last inequality we used that the ratios Hi/h
x1
min, Hj/h

x2
min are

uniformly bounded because the ratios hi+1/hi, hj+1/hj are as well (see Re-
mark 3.5).

Summing up, we conclude that

||I2v||L∞(Sij) ≤
∑

α,β=1,2,3

||φαβ||L∞(Sij)||v||L∞(Sij) ≤ C||v||L∞(Sij)

as we wanted to prove.

Lemma 5.2. There exists a constant C, such that, for any v ∈ VN ,∥∥∥∂I2v
∂x1

∥∥∥
L∞(Sij)

≤ C
∥∥∥ ∂v
∂x1

∥∥∥
L∞(Sij)

,∥∥∥∂I2v
∂x2

∥∥∥
L∞(Sij)

≤ C
∥∥∥ ∂v
∂x2

∥∥∥
L∞(Sij)

.

Proof. Let us prove the first inequality. Clearly, analogous arguments apply
to obtain the second one.

Using expressions (64) for I2v and (63) for φαβ, we obtain that

∂I2v

∂x1

(x1, x2) =
∑

β=1,2,3

∑
α=1,2,3

∂φαβ

∂x1

(x1, x2)v(x
α
1 , x

β
2 )

=
∑

β=1,2,3

∏
ℓ̸=β

x2 − xℓ
2

xβ
2 − xℓ

2

∑
α=1,2,3

∂

∂x1

(∏
k ̸=α

x1 − xk
1

xα
1 − xk

1

)
v(xα

1 , x
β
2 ).

We observe that the ratios involving the x2 variable can be bounded by a
constant, as in the previous proof. On the other hand, for each β, let pβ(x1)

be the quadratic interpolant of vβ := v(·, xβ
2 ) over the points xα

1 , α = 1, 2, 3,
that is

pβ(x1) =
∑

α=1,2,3

∏
k ̸=α

x1 − xk
1

xα
1 − xk

1

v(xα
1 , x

β
2 )
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and therefore
∂I2v

∂x1

(x1, x2) =
∑

β=1,2,3

∏
ℓ̸=β

x2 − xℓ
2

xβ
2 − xℓ

2

p′β(x1).

Since we can also write

pβ(x1) = vβ(x
1
1) +

vβ(x
2
1)−vβ(x

1
1)

x2
1−x1

1
(x1 − x1

1)

+

vβ(x
3
1)−vβ(x

2
1)

x3
1−x2

1
−
vβ(x

2
1)−vβ(x

1
1)

x2
1−x1

1

x3
1−x1

1
(x1 − x1

1)(x1 − x2
1)

we have, if xM
1 =

x1
1+x2

1

2
, that

p′β(x1) =
vβ(x

2
1)−vβ(x

1
1)

x2
1−x1

1
+ 2

vβ(x
3
1)−vβ(x

2
1)

x3
1−x2

1
−
vβ(x

2
1)−vβ(x

1
1)

x2
1−x1

1

x3
1−x1

1

(
x1 − xM

1

)
.

Afterwards, by the Mean Value Theorem, there exist ζ0 ∈ (x1
1, x

2
1) and ζ1 ∈

(x2
1, x

3
1) such that

p′β(x1) = v′β(ζ0) + 2
v′β(ζ1)−v′β(ζ0)

x3
1−x1

1
(x1 − xM

1 ).

Now, remembering that |x3
1 − x1

1| = Hi and |x1 − xM
1 | ≤ Hi, we get

|p′β(x1)| ≤ |v′β(ζ0)|+ 2
|v′β(ζ1)|+|v′β(ζ0)|

Hi
Hi ≤ 5

∥∥∥ ∂v
∂x1

(·, xβ
2 )
∥∥∥
L∞(x1

1,x
3
1)
.

Summing up, we obtain∥∥∥∂I2v
∂x1

∥∥∥
L∞(Sij)

≤ C
∑

β=1,2,3

∥∥∥ ∂v
∂x1

(·, xβ
2 )
∥∥∥
L∞(x1

1,x
3
1)
≤ C

∥∥∥ ∂v
∂x1

∥∥∥
L∞(Sij)

as we wanted to show.

Lemma 5.3. Let w be the solution of (53), and I2w its piecewise biquadratic
interpolation on SN . There exists a constant C such that

∥w − I2w∥ε2 ≤ Ch2. (65)

Proof. The result follows from the a priori estimates provided in Section 5.1
and the following interpolation error estimates for the operator I2 (see [24,
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B1

B4

B3

B2

B8 B7

B5 B6

Figure 2: Split of the unitary square domain used in the proof of Lemma 5.3

Theorem 2.7] and [9, Lemma 4.1]). For v ∈ H3(Sij), we have

∥v − I2v∥0,Sij
≤ C

[
H2

i

∥∥∥ ∂2v
∂x2

1

∥∥∥
0,Sij

+H2
j

∥∥∥ ∂2v
∂x2

2

∥∥∥
0,Sij

]
, (66)∥∥∥∂(v−I2v)

∂x1

∥∥∥
0,Sij

≤ C

[
H2

i

∥∥∥ ∂3v
∂x3

1

∥∥∥
0,Sij

+H2
j

∥∥∥ ∂3v
∂x1∂x2

2

∥∥∥
0,Sij

]
, (67)∥∥∥∂(v−I2v)

∂x2

∥∥∥
0,Sij

≤ C

[
H2

i

∥∥∥ ∂3v
∂x2

1∂x2

∥∥∥
0,Sij

+H2
j

∥∥∥ ∂3v
∂x3

2

∥∥∥
0,Sij

]
, (68)

where the constant C is independent of the element Sij and v. With the
notation introduced in Figure 2, we write Ω as

Ω =
8⋃

i=1

Bi,

where

B1 =
N⋃
j=1

S1j, B2 =
N⋃
i=1

Si1, B3 =
N⋃
j=1

SNj, B4 =
N⋃
i=1

SiN ,
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and
B5 =

⋃
{Sij : 2 ≤ i, j ≤ N/2− 1} ,

B6 =
⋃

{Sij : N/2 ≤ i ≤ N − 1, 2 ≤ j ≤ N/2− 1} ,
B7 =

⋃
{Sij : N/2 ≤ i, j ≤ N − 1} ,

B8 =
⋃

{Sij : 2 ≤ i ≤ N/2− 1, N/2 ≤ j ≤ N − 1} .
Due to the symmetry of the problem, it is sufficient to estimate (65) over B1

and B5. Starting with B1, we have

∥w − I2w∥2ε2, B1
= ε2∥∇(w − I2w)∥20, B1

+ ∥w − I2w∥20, B1
. (69)

Here we obtain, for the first term on the right-hand side

ε2∥∇(w − I2w)∥20, B1
= ε2

∥∥∥∂(w−I2w)
∂x1

∥∥∥2
0, B1

+ ε2
∥∥∥∂(w−I2w)

∂x2

∥∥∥2
0, B1

. (70)

From (56) and (57), we can observe that∣∣∣∣ ∂w∂xi

∣∣∣∣ ≤ C

ε
, i = 1, 2.

Taking this into account, using Lemma 5.2 and since |B1| = H1 = Ch
1

1−η ,
we obtain

ε2
∥∥∥∥∂(w − I2w)

∂x1

∥∥∥∥2
0, B1

≤ Ch
1

1−η .

A similar result is obtained for the derivative with respect to x2 of the inter-
polation error and, therefore, we deduce from (70) that

ε2∥∇(w − I2w)∥20, B1
≤ Ch

1
1−η . (71)

Similarly, using Lemma 5.1 and taking into account that w is uniformly
bounded, we have

∥w − I2w∥20, B1
≤ Ch

1
1−η . (72)

Finally, with η ≥ 3
4
in (71) and (72), it follows

∥w − I2w∥2ε2, B1
≤ Ch4.
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Now we deal with the estimate on B5. We consider Sij for 2 ≤ i, j ≤
N/2− 1, then

∥w − I2w∥2ε2, Sij
= ε2∥∇(w − I2w)∥20, Sij

+ ∥w − I2w∥20, Sij
. (73)

We have again for the first term on the right side

ε2∥∇(w − I2w)∥20, Sij
= ε2

∥∥∥∂(w−I2w)
∂x1

∥∥∥2
0, Sij

+ ε2
∥∥∥∂(w−I2w)

∂x2

∥∥∥2
0, Sij

. (74)

We note that the side lengths Hi, Hj of the elements Sij considered here
satisfy Hi ≤ Chxη

1, Hj ≤ Chxη
2 for (x1, x2) ∈ Sij. Using this in equation (67)

we have∥∥∥∂(w−I2w)
∂x1

∥∥∥2
0, Sij

≤ Ch4

[∥∥∥x2η
1

∂3w
∂x3

1

∥∥∥2
0, Sij

+
∥∥∥x2η

2
∂3w

∂x1∂x2
2

∥∥∥2
0, Sij

]
≤ Ch4ε−2

where the last inequality is a consequence of (58), (59) and the condition η ≥
3
4
. Since the corresponding inequality∥∥∥∂(w−I2w)

∂x2

∥∥∥2
0, Sij

≤ Ch4ε−2

is proved analogously, we obtain

ε2∥∇(w − I2w)∥20, Sij
≤ Ch4. (75)

Similarly, for the second term on the right side of (73), using (66) and
then (58), with η ≥ 3

4
, we have

∥(w − I2w)∥20, Sij
≤ Ch4

[∥∥∥x2η
1

∂2w
∂x2

1

∥∥∥2
0, Sij

+
∥∥∥x2η

2
∂2w
∂x2

2

∥∥∥2
0, Sij

]
≤ Ch4. (76)

Finally, summing inequalities (75) and (76) over all Sij ∈ B5,

∥w − I2w∥2ε2,B5
≤ Ch4

concluding the proof.

The proof of the next lemma follows from the same arguments used in [9,
Lemma 4.2].
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Lemma 5.4. There exists a constant C such that, for any v ∈ VN ,

∥I2v∥ε2 ≤ C∥v∥ε2 . (77)

Proposition 5.1. Let w be the solution of (53), wN ∈ VN its finite element
approximation, and w∗

N = I2wN . Suppose that 3
4
≤ η < 1. Then, there exists

a constant C such that

∥w − w∗
N∥ε2 ≤ Ch2 log

1
2
(
1
ε

)
. (78)

Proof. Since I2wI = I2w, we have

∥w − w∗
N∥ε2 ≤ ∥w − I2w∥ε2 + ∥I2(wI − wN)∥ε2 ,

and therefore, combining (65), (77) and (61), we conclude the proof.

Remark 5.2. Under the assumed regularity and compatibility conditions on
f , the estimates (56), (57), (58) and (59), also hold in the non-singularly
perturbed case (moderate values of ε). Therefore, the result of superconver-
gence of Proposition 5.1 holds in that case as well. We will use this fact in
the next Section to obtain our main result.

Remark 5.3. The proof of Proposition 5.1 relies heavily on the properties of
graded meshes, which are a type of layer–adapted meshes. Superconvergence
results for the approximation of singularly perturbed problems have also been
obtained for ε–dependent layer–adapted meshes, such as piecewise–uniform
Shishkin–type meshes (see [25] and the references therein), A–type meshes
[26], and other ε–dependent graded meshes [27]. These meshes have a simple
structure but require prior knowledge of the boundary layer locations.

Following the discussion in [28, Remark 3], and motivated by the results
in [29] on the use of equidistributed meshes for singularly perturbed parabolic
systems, an interesting question is whether a similar superconvergence result
can be established for adaptive or moving meshes. We hope to address this
question in future work.

6. The error estimate

We recall the functions Ui ∈ H1
0 (Ω), associated with the eigenvalue µi,

which are solutions of the variational problems (16), and their piecewise
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bilinear approximations Ui,N ∈ VN introduced in (26) with the space VN

defined in (25). Let U∗
i,N be the post-processed version of Ui,N introduced in

the previous section. According to Proposition 5.1, with ε =
√
µi and h = 1

N
,

it holds that

∥Ui − U∗
i,N∥µi

≤ C
1

N2
|log µi|

1
2 (logM)s (79)

where C depends on f and s, and is independent of N,M , and µi. We used
estimate |vi(0)| ≤ (logM)s from Remark 3.4.

Now we choose N = M
3
4 . Then, by inserting (37) (absorbing ∥f∥0 into

the constant C) and (33) into (32), and using (79) for i = 1, 2, . . . ,M , we
obtain

∥u− uM,N∥Hs(Ω) ≲ (logM)
3+σα

2 M−1 +

(
M∑
i=1

| log µi|(logM)2sN−4

) 1
2

≤ CM−1

[
(logM)

3+σα
2 + (logM)s

(
max
1≤i≤M

|log µi|
) 1

2

]
≤ CM−1

[
(logM)

3+σα
2 + (logM)

1
2
+s
]

≤ CM−1 (logM)max( 3+σα
2

, 1
2
+s)

(80)
where we used, taking into account the upper and lower bounds (17) and
(18) for the eigenvalues µi, that

max
1≤i≤M

|log µi| ≤ C logM.

Then we have proven our main theorem, which we can now state.

Theorem 6.1. Assume that f ∈ C2(Ω) is a function satisfying the compat-
ibility condition (55), with Ω = (0, 1)2. Let s ∈ (0, 1) and u be the solution

of problem (1). Given M ∈ N, let N = M
3
4 . We consider the approximation

uM,N given by (28), with the grid GM introduced in Section 3.4 with the pa-
rameter σ satisfying (19) and the graded mesh TN defined with η satisfying
(21). Then there exists a constant C, depending only on s and f , such that

∥u− uM,N∥Hs(Ω) ≤ C (logM)tM−1, (81)

with t = max
{

3+σα
2

, 1
2
+ s
}
.
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We can rewrite the result in terms of the total number Ndof of degrees of
freedom. Notice that our discretization requires solving M reaction–diffusion
problems, each one of them having O(N2) degrees of freedom. It follows that

Ndof ∼ M
5
2 . Therefore, we can rewrite (81) as

∥u− uM,N∥Hs(Ω) ≤ C (logNdof )
t N

− 2
5

dof .

This order of convergence is suboptimal, since for a regular two–dimensional

problem an error of order N
− 1

2
dof is expected. However, it is slightly better than

the result obtained in [6, Theorem 3] where, additionally, a stronger bound-
ary compatibility condition is additionally assumed on f . On the other hand,
we would like to emphasize that the M linear systems coming from the ap-
proximation of the reaction–diffusion problems (26) have a simple structure,
they are of the form

µiA1 + A0 = dsvi(0)b i = 1, . . . ,M

with matrices A0 and A1, and the vector b, depending only on the graded
mesh TN . Then M linear systems can be obtained simultaneously once the
eigenpairs (µi, vi) are known, and parallelization algorithms could be applied
to improve performance.

7. Numerical examples

In this section, we present numerical examples to validate the theoreti-
cal results of the main Theorem 6.1 regarding the approximation of problem
(1). Additionally, we provide a numerical example that confirms the result of
Proposition 5.1, demonstrating the robust convergence of the post–processed
solution for reaction–diffusion problems with respect to the singular pertur-
bation parameter.

7.1. Approximation of the fractional model problem

In order to confirm the results of Theorem 6.1, we approximate the solu-
tion of the problem

(−∆)s u = f in Ω,

u = 0 on ∂Ω.
(82)

in two examples. The calculations were implemented using GNU Octave [30].
The eigenvalue problems of Section 3.3 were solved using the command eig,

32



and the linear problems (26) were solved using Octave’s backslash operator
“\”. Taking into account the symmetry of the problems, errors are computed
in the subdomain [0, 1

2
] in the one-dimensional case and in [0, 1

2
]2 in the two-

dimensional case.
We measure the error in the energy norm ∥ · ∥Hs(Ω), which is estimated by∫

Ω

|f(u− uM,N)|

since

∥u− uM,N∥2Hs(Ω) ≲ ∥U − UM,N∥2L2(yα,C) = ds

∫
Ω

f(u− uM,N).

Example 1. We consider problem (82) with Ω = (0, 1)2 and

f(x, y) = (x+ y)(x+ y − 2)((x− y)2 − 1).

For the exponents s = 0.25 and s = 0.75, we approximate the problem as
stated in Section 3.4 with the following parameters.

• σ = 1−0.9s
1+0.1s

, which implies 1
1−σ

= 1
s
+ 0.1,

• Y = 2 logM ,

• η varies in {0.8, 0.85, 0.9},

• M is taken as M = 2i, with i = 4, 5, . . . , 9.

Since the exact solutions are unknown, the numerical errors were estimated
comparing with a solution obtained for the highest value of M = 1024.

We show plots of the solutions in Figure 3 obtained for M = 256. In Fig-
ure 4, we plot the estimated error in the Hs–norm versus M on a logarithmic
scale, observing a convergence order close to 1, which confirms the results of
Theorem 6.1.

Furthermore, in order to check that some problems (16) become singularly
perturbed, we report lmin (defined in Section 3.3) and µmin := min{µi : i =
1, . . . ,M} in Table 7.1.

Example 2. In this example we take a right–hand side f which does not
satisfy the compatibility condition (55), in two cases:
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Figure 3: Numerical solutions for Example 1 with s = 0.25 (left) and s = 0.75 (right)

N
s = 0.25 s = 0.75

lmin µmin lmin µmin

24 6.4124e-05 9.0244e-10 0.10423 0.001577
25 4.6742e-06 4.795e-12 0.048244 0.00033782
26 3.2709e-07 2.3481e-14 0.021436 6.6696e-05
27 2.2253e-08 1.0868e-16 0.0092602 1.2446e-05
28 1.4831e-09 4.8272e-19 0.0039186 2.2288e-06
29 9.7295e-11 2.0776e-21 0.0016323 3.8675e-07

Table 1: Report of lmin and µmin for data of Example 1.

Figure 4: Numerical errors for Example 1
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Figure 5: Numerical solutions for Example 2, 1d–case, with s = 0.25 (left) and s = 0.75
(right)

Figure 6: Numerical solutions for Example 2, 2d–case, with s = 0.25 (left) and s = 0.75
(right)

• the 1d–case: Ω = (0, 1), and f(x) = 1,

• the 2d–case: Ω = (0, 1)2, and f(x, y) = 1.

Figures 5 and 6 show plots of the solutions obtained for M = 256.
In Figures 7 and 8, we plot the estimated Hs versus M on a logarithmic

scale. We observe that, although this example is not covered by the theory,
the results are consistent with Theorem 6.1. We also show, in Figure 9,
the errors obtained when using uniform meshes for the discretization of the
singularly perturbed reaction–diffusion problems in the 2d–case, with the
same number of elements as in the corresponding graded mesh cases. In this
case, we observe that the order of convergence is reduced, becoming closer
to 1

2
.
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Figure 7: Numerical errors for Example 2, 1d–case

Figure 8: Numerical errors for Example 2, 2d–case

Figure 9: Numerical errors for Example 2, 2d–case, using uniform meshes on Ω
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Figure 10: Typical solution of problem (7.2)

7.2. Approximation of reaction–diffusion problems by post–processing

We consider the singularly perturbed reaction–diffusion problem

−ε2∆w + w = f in Ω = (0, 1)2, w = 0 on ∂Ω,

where f is chosen so that the solution is

w(x, y) =

(
cos
(π
2
x
)
− e−

x
ε − e

1
ε

1− e
1
ε

)(
1− y − e−

y
ε − e

1
ε

1− e
1
ε

)
.

This is a widely used test problem in the literature (see, e.g. [31, 32]). Its
solution exhibits only two layers, near x = 0 and y = 0. It is interesting to
note that estimates from equations (56) and (57) are sharp for the solution
in the region influenced by the layers, while the solution becomes smoother
further away from them. Thus, the example is sufficiently typical to verify
the results of Proposition 5.1. A plot of the solution, obtained for ε = 10−4,
is shown in Figure 10

For ε varying between 10−4 and 10−10 we compute the finite element so-
lution wN of the discrete variational formulation (60) as described in Section
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Figure 11: Superconvergence in the energy norm of the post–processed solution for example
in Section 7.2

5.2, using graded meshes TN , with N = 15, 30, 60, 120. Then, we compute
the post–processed w∗

N introduced in Section 5.3. In Figure 11, we plot (in
logarithmic scale) the errors ∥w−w∗

N∥ε2 against the number 2N of intervals
along the x and y axes of the graded meshes. We observe that the errors
are quite similar for all values of the singular perturbation parameter. The
order of convergence with respect to N observed is quadratic in h = 1

N
in

agreement with Proposition 5.1.
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