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INTERIOR PENALTY DISCONTINUOUS GALERKIN FEM FOR
THE p(x)-LAPLACIAN∗

LEANDRO M. DEL PEZZO† , ARIEL L. LOMBARDI‡ , AND SANDRA MARTÍNEZ§

Abstract. In this paper we construct an “interior penalty” discontinuous Galerkin method to
approximate the minimizer of a variational problem related to the p(x)-Laplacian. The function
p : Ω → [p1, p2] is log-Hölder continuous and 1 < p1 ≤ p2 < ∞. We prove that the minimizers of the
discrete functional converge to the solution. We also make some numerical experiments in dimension
one to compare this method with the conforming Galerkin method, in the case where p1 is close to
one. This example is motivated by its applications to image processing.
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1. Introduction. In this paper we study a discontinuous Galerkin method to
approximate the minimizer of a nonhomogeneous functional. This functional is related
to the so-called p(x)-Laplacian operator, i.e.,

(1.1) Δp(x)u = div(|∇u(x)|p(x)−2∇u).

This operator extends the classical Laplacian (p(x) ≡ 2) and the so-called p-
Laplacian (p(x) ≡ p with 1 < p < ∞) and it has been recently used in image processing
and in the modeling of electrorheological fluids; see [3, 8, 23].

In an image processing problem, the aim is to recover the real image I from an
observed image ξ of the form ξ = I + η, where η is a noise.

Approaches to image denoising have been developed along three main lines:
wavelet methods, stochastic methods, and variational methods; see the references
in [3]. One variational approach that has attracted a great deal of attention is the
total variation method of Rudin, Osher, and Fetami [22]. The variational problem is
as follows: Minimize the functional |Du|(Ω) over all the functions in BV (Ω) ∩ L2(Ω)
such that ∫

Ω

u dx =

∫
Ω

ξ dx and

∫
Ω

|u− ξ|2 dx = σ2

for some σ > 0.
The conditions on the space come from the assumption that ξ is a function that

represents a white noise with mean zero and variance σ. Moreover, the authors prove
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that this problem is equivalent to minimizing

|Du|(Ω) + λ

2

∫
Ω

|u− ξ|2 dx

for some nonnegative Lagrange multiplier λ = λ(σ, ξ). This model works when the
image is piecewise constant but in some cases can cause a staircasing effect. See, for
instance, [7].

An older approach consists in minimizing∫
Ω

|∇u|2 + λ

2

∫
Ω

|u− ξ|2 dx.

This method solves the staircasing effect, but it has the problem that it does not
preserve edges.

In [8], the authors introduce a model that involves the p(x)-Laplacian for some
function p : Ω → [p1, 2] with p1 > 1. This function encodes the information on the
regiones where the gradient is sufficiently large (at edges) and where the gradient
is close to zero (in homogeneous regions). In this manner, the model avoids the
staircasing effect still preserving the edges.

Recently, in [3] the authors propose a variant of the method of Chen, Levine, and
Rao [8]. More precisely, they consider the functional∫

Ω

|∇u|p(x) + λ

2

∫
Ω

|u− ξ|2 dx

with p : Ω → [1, 2] a function such that p(x) = PM (|∇Gδ ∗ ξ|(x)), where Gδ(x) is an
approximation of the identity, M >> 1, and PM is a function that satisfies PM (0) = 2
and PM (x) = 1 for all |x| > M . Observe that since p(x) = 1 for some values of x, the
authors have to rewrite the functional in a form that allows for computation of weak
derivatives.

Motivated by the above mentioned applications, we study a numerical method to
approximate minimizers of a functional related to the p(x)-Laplacian.

We work in the following setting. Let Ω be a bounded Lipschitz domain. For
functions p, s, t the following conditions will be assumed when necessary:

(H1) p : Ω → [p1, p2] (1 < p1 ≤ p2 < ∞) is log-Hölder continuous. That is, there
exists a constant Clog such that

|p(x) − p(y)| ≤ Clog

log
(
e+ 1

|x−y|

) ∀x, y ∈ Ω;

(H2) s ∈ L∞(Ω), with 1 ≤ s(x) < p∗(x) − ε for some ε > 0;
(H3) t ∈ C0(∂Ω) with 1 ≤ t(x) < p∗(x).

Here, p∗ and p∗ are the Sobolev critical exponents for these spaces, i.e.,

(1.2) p∗(x) :=

{
p(x)N
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,
and p∗(x) :=

{
p(x)(N−1)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Given p, q, r satisfying (H1), (H2), and (H3), respectively, and ξ ∈ Lq(·)(Ω), we
want to minimize the functional

I(v) =

∫
Ω

(
|∇v(x)|p(x) + |v(x) − ξ(x)|q(x)

)
dx +

∫
ΓN

|v|r(x) dS
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over all v ∈ A, where

A = {v ∈ W 1,p(·)(Ω) : v − uD ∈ W
1,p(·)
ΓD

(Ω)},

uD ∈ W 1,p(·)(Ω), and ∂Ω = ΓD ∪ ΓN . For the definitions of the variable exponent

Sobolev spaces W 1,p(·)(Ω) and W
1,p(·)
ΓD

(Ω), see section 2.
Let us observe that, considering the applications we have in mind, it is relevant to

study the minimization problem in the case where p approaches the value 1 in some
regions. We can see by making some numerical experiments that the minimizers have
a large derivative in these regions. For this reason, the conforming finite element
method is not appropriate since its use would imply the need of fine meshes in order
to obtain good approximations; see section 8.

We consider the so-called discontinuous Galerkin methods. These methods are
relatively new from the theoretical point of view. In [1], we can find a unification of
all methods of this type. In all the examples of that paper, the authors take as a
model a linear differential equation.

At this point we want to mention that in [3] and [8] the authors find an approxi-
mation of the solutions by using an explicit finite difference scheme for the associated
parabolic problem.

Our aim is to study, in the future, the minimization problem in the case where
p approaches the value 1 in some regions (where there is no weak formulation). For
this reason, we think that the best way to find approximations is by finding a good
discretization of the minimization problem. We take a discretization similar to the
one in [6], where the authors study a functional that includes the case p = constant.

Our discrete functional is the following:

Ih(vh) =

∫
Ω

(
|∇vh +Rh(vh)|p(x) + |vh − ξ|q(x)

)
dx+

∫
ΓD

|vh − uD|p(x)h1−p(x) dS

+

∫
Γint

|[[vh]]|p(x)h1−p(x) dS +

∫
ΓN

|vh|r(x) dS,

where h is the local mesh size, h is the global mesh size, Γint is the union of the
interior edges of the elements, [[vh]] is the jump of the function between two edges,
and ∇vh denotes the elementwise gradient of vh; see section 3 for a precise definition.
Observe that the boundary condition is weakly imposed by the second term of the
functional. Finally, Rh is the lifting operator defined in section 5.1, which represents
the contributions of the jumps to the distributional gradient.

In the case p = constant, the boundedness of this operator is proved by using
an inf-sup condition. In our case, for technical reasons we use a different approach,
which consists of finding a local characterization of the operator.

With this setting the discrete problem is to find a minimizer uh of Ih over the
space Sk(Th) of all the functions that are polynomials of degree at most k in each
element, with k ≥ 1, see section 3.

In this work we show that the sequence uh converges to the minimizer u of I over
the space A. We want to remark here that we are assuming that for each vh ∈ Sk(Th),
all the terms of Ih(vh) can be exactly computed.

In fact, we prove the following theorem.
Theorem 1.1. Let Ω be a polyhedral domain. Let p(x), q(x), and r(x) be func-

tions satisfying (H1), (H2), and (H3), respectively, and let uD ∈ W 2,p2(Ω). For each
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h ∈ (0, 1], let uh ∈ Sk(Th) be the minimizer of Ih. If u is the minimizer of I, then

uh → u strongly in Ls(·)(Ω) ∀s satisfying (H2),(1.3)

uh → u strongly in Lt(·)(∂Ω) ∀t satisfying (H3),(1.4)

Ih(uh) → I(u),(1.5)

R(uh) → 0 strongly in Lp(·)(Ω),(1.6) ∫
ΓD

|uh − uD|p(x)h1−p(x) dS +

∫
Γint

|[[uh]]|p(x)h1−p(x) dS → 0,(1.7)

∇uh → ∇u strongly in Lp(·)(Ω).(1.8)

Finally, we want to mention the places where we need the regularity hypotheses
on the function p. First, in order to prove Theorem 1.1 we need to use the continu-
ity of the embedding W 1,p(·)(Ω) ↪→ Lp∗(·)(Ω), the continuity of the Trace operator
W 1,p(·)(Ω) ↪→ Lq(·)(∂Ω), and the Poincaré inequality. As we can see in Theorems 2.9,
2.10, and 2.8, for these results we need p to be log-Hölder and r ∈ C0(∂Ω).

We also use strongly that p is log-Hölder in Proposition 2.11. This result says
that if κ is an element with diameter hκ and pκ+ and pκ− are respectively the maximum

and minimum of p over κ, then h
pκ
−−pκ

+
κ is bounded independent of hκ. This property

is crucial in the proof of several results in the paper.
On the other hand, in order to prove the convergence of the sequence uh we need

a technical hypothesis on the boundary condition uD. In fact, Lemma 6.4 covers only
the case where uD ∈ W 2,p2(Ω).

Outline of the paper. In section 2 we state several properties of the variable
exponent Sobolev spaces.

In section 3 we give some definitions and properties related to the mesh and to
the broken Sobolev spaces.

In section 4 we study the reconstruction operator and we prove some error esti-
mates that are crucial for the rest of the paper (Corollary 4.5).

In section 5 we prove the boundedness of the lifting operator (Theorem 5.3).
In section 6 we prove the broken Poincaré inequality (Theorem 6.1) and the

coercivity of the functional (Theorem 6.2) and finally we give the proof of Theorem
1.1.

In section 7 we study the convergence of the conforming finite element method.
In section 8 we give a one-dimensional example and compare both conforming

and non-conforming schemes.

2. Preliminaries: The spaces Lp(·)(Ω) and W 1,p(·)(Ω). We now introduce
the spaces Lp(·)(Ω) and W 1,p(·)(Ω) and state some of their properties.

Let p : Ω → [p1, p2] be a measurable bounded function, called a variable exponent
on Ω, where p1 := ess inf p(x) and p2 := ess sup p(x) with 1 ≤ p1 ≤ p2 < ∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all measur-
able functions u : Ω → R for which the modular


p(·)(u) :=

∫
Ω

|u(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) := inf{k > 0: 
p(·)(u/k) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.
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The following properties can be obtained directly from the definition of the norm.
Proposition 2.1. If u, un ∈ Lp(·)(Ω), ‖u‖p(·) = λ, then

(1) λ < 1 (= 1, > 1) if only if

∫
Ω

|u(x)|p(x) dx < 1 (= 1, > 1);

(2) if λ ≥ 1, then λp1 ≤
∫
Ω

|u(x)|p(x) dx ≤ λp2 ;

(3) if λ ≤ 1, then λp2 ≤
∫
Ω

|u(x)|p(x) dx ≤ λp1 ;

(4)
∫
Ω
|un(x)|p(x) dx → 0 if and only if ‖un‖p(·) → 0;

(5) ‖1‖p(·) ≤ max
{
|Ω|

1
p1 , |Ω|

1
p2

}
;

(6) if Ω =
⋃m

i=1 Ωi, where Ωi ⊂ Ω are open sets, then there exists a constant
C > 0 depending on m such that

‖u‖Lp(·)(Ω) ≤ C

m∑
i=1

‖u‖Lp(·)(Ωi).

Proof. See Theorems 1.3 and 1.4 in [18].
For the proofs of the following three theorems we refer the reader to [21].
Theorem 2.2. Let q(x) ≤ p(x); then Lp(·)(Ω) ↪→ Lq(·)(Ω) continuously.
Theorem 2.3. Let p, q, r : Ω → [1,∞), and ε > 0 be such that p(x) ≤ r(x) <

q(x) − ε for all x ∈ Ω. Then, there exists a positive constant C such that for every
u ∈ Lp(·)(Ω) ∩ Lq(·)(Ω) the inequality

‖u‖Lr(·)(Ω) ≤ C‖u‖μ
Lp(·)(Ω)

‖u‖νLq(·)(Ω)

holds, where μ > 0 and ν ≥ 0 are defined as

μ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
esssupΩ

p(x)

r(x)

q(x)− r(x)

q(x)− p(x)
if ‖u‖Lp(·)(Ω) > 1,

essinfΩ
p(x)

r(x)

q(x) − r(x)

q(x) − p(x)
if ‖u‖Lp(·)(Ω) ≤ 1,

ν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
esssupΩ

q(x)

r(x)

r(x) − p(x)

q(x) − p(x)
if ‖u‖Lq(·)(Ω) > 1,

essinfΩ
q(x)

r(x)

r(x) − p(x)

q(x)− p(x)
if ‖u‖Lq(·)(Ω) ≤ 1.

Theorem 2.4. Let p′(x) such that 1/p(x) + 1/p′(x) = 1. Then Lp′(·)(Ω) is the
dual of Lp(·)(Ω). Moreover, if p1 > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are reflexive.

Now we give some well-known inequalities,
Proposition 2.5. For any x fixed we have the following inequalities:

|η − ξ|p(x) ≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) ≥ 2,

|η − ξ|2
(
|η|+ |ξ|

)p(x)−2

≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) < 2,

|η|p(x) ≤ 2p(x)−1(|η − ξ|p(x) + |ξ|p(x)) if p(x) ≥ 1.

These inequalities say that the function A(x, q) = |q|p(x)−2q is strictly monotone.
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Proposition 2.6. Let Fn, F ∈ Lp(·)(Ω).
(1) If

Fn ⇀ F weakly in Lp(·)(Ω),

then ∫
Ω

|F |p(x) dx ≤ lim inf
n→∞

∫
Ω

|Fn|p(x) dx.

(2) If

Fn → F strongly in Lp(·)(Ω),

then ∫
Ω

|Fn|p(x) dx →
∫
Ω

|F |p(x) dx,

(3) If

(2.1) Fn ⇀ F weakly in Lp(·)(Ω) and

∫
Ω

|Fn|p(x) dx →
∫
Ω

|F |p(x) dx,

then

Fn → F strongly in Lp(·)(Ω).

Proof. For the proof of (1) and (3) see Theorem 3.9 and Lemma 2.4.17 in [13].
Finally, (2) follows by Proposition 2.3 in [15].

Let W 1,p(·)(Ω) denote the space of measurable functions u such that u and the
distributional derivative ∇u are in Lp(·)(Ω). The norm

‖u‖W 1,p(·)(Ω) : = ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(Ω) a Banach space.

We define the space W
1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(·)(Ω). Then we
have the following version of the Poincaré inequality; see Theorem 3.10 in [21].

Lemma 2.7. If p : Ω → [1,+∞) is continuous in Ω, there exists a constant C

such that for every u ∈ W
1,p(·)
0 (Ω),

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω).

We also have the following version of the Poincaré inequality; see Lemma 2.1 in
[20].

Theorem 2.8. Let Ω ⊂ R
n be a Lipschitz domain and p, q : Ω → [1,+∞) with

p ≤ q ≤ p∗. Then,

‖u− (u)Ω‖Lq(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω)

for all u ∈ W 1,p(·)(Ω), where (u)Ω = 1
|Ω|
∫
Ω
u dx.

In order to have better properties of these spaces, we need more hypotheses on
the regularity of p. For expample, it was proved in [11, Theorem 3.7] that if one
assumes that ∂Ω is Lipschitz and p is log-Hölder continuous, then C∞(Ω̄) is dense in
W 1,p(·)(Ω); see also [10, 14, 16, 21, 24]. The local log-Hlöder condition was first used
in the variable exponent context in [26].

We now state two Sobolev embedding theorems. (For the proofs see [12] and
Corollary 2.4 in [17], respectively.)
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Theorem 2.9. Let Ω be a Lipschitz domain. Let p : Ω → [1,∞) be log-Hölder
continuous. Then the embedding W 1,p(·)(Ω) ↪→ Lp∗(·)(Ω) is continuous.

Theorem 2.10. Let Ω be an open bounded domain with Lipschitz boundary.
Suppose that p ∈ C0(Ω) with p1 > 1. If r ∈ C0(∂Ω) satisfies the condition 1 ≤
r(x) < p∗(x) for all x ∈ ∂Ω, then there is a compact boundary trace embedding
W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω).

Let ΓD ⊂ ∂Ω, and let p be log-Hölder. We define the space W
1,p(·)
ΓD

(Ω) as the

closure of the space {ϕ ∈ C∞(Ω) : ϕ = 0 on ΓD} in W 1,p(·)(Ω).
The following proposition is crucial in order to prove the main result of this paper.
Proposition 2.11. Let p : Ω → [1,∞) be log-Hölder continuous and bounded.

Let α > 0, D ⊂ Ω, and h = diam(D). Then,
(1) there exists a constants C independent of h such that

(2.2) hα(p(x)−p(y)) ≤ C ∀x, y ∈ D;

(2) if A ≥ hα, then Ap(x) ≤ CAp(y) for all x, y ∈ D such that p(x) ≤ p(y).
Proof. Let x, y ∈ D. If p(x) ≥ p(y) or h ≥ 1 the result follows since Ω is bounded.

If p(x) ≤ p(y) and h < 1, using that p is log-Hölder, we have

p(y)− p(x) ≤ C

log

(
e+

1

|x− y|

) ≤ C

log

(
e+

1

h

) .

Then, we get (2.2).
By (2.2) and as A ≥ hα, we have that for all x, y ∈ D such that p(x) ≤ p(y),

Ap(x) = Ap(y)

(
A

hα

)p(x)−p(y)

hα(p(x)−p(y)) ≤ CAp(y).

3. The mesh Th and properties of W 1,p(·)(Th). In this section we give some
definitions and properties related to the mesh and to the broken Sobolev space.

Hypothesis 3.1. Let Ω be a polygonal Lipschitz domain and (Th)h∈(0,1] be a

family of partitions of Ω into polyhedral elements. We assume that there exists a
finite number of reference polyhedral κ̂1, . . . , κ̂r such that for all κ ∈ Th there exists
an invertible affine map Fκ such that κ = Fκ(κ̂i). We assume that each κ ∈ Th is
closed and that diam(κ) ≤ h for all κ ∈ Th.

Now we give some notation:

Eh := {κ ∩ κ′ : dimH(κ ∩ κ′) = N − 1} ∪ {κ ∩ ∂Ω : dimH(κ ∩ ∂Ω) = N − 1},

Γint :=
⋃

{e ∈ Eh : dimH(e ∩ ∂Ω) < N − 1}.

Nh is the set of nodes of Th. For every z ∈ Nh and e ∈ Eh we define

Tz :=
⋃

{κ ∈ Th : z ∈ κ}, Tκ :=
⋃

{Tz : z ∈ κ}, Te :=
⋃

{Tκ : e ∈ κ},
hκ := diam(κ), hz := diam(Tz), he := diam(e),

pκ− := ess inf
x∈κ

p(x), pκ+ := ess sup
x∈κ

p(x), pe− := ess inf
x∈e

p(x), and pe+ := ess sup
x∈e

p(x).

We assume that the mesh satisfies the following hypotheses.
Hypothesis 3.2. The family of partitions (Th)h∈(0,1] satisfies Hypothesis 3.1 and

the following hold:
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(a) There exist positive constants C1 and C2, independent of h, such that for each
element κ ∈ Th

C1h
N
κ ≤ |κ| ≤ C2h

N
κ .

(b) There exists a constant C1 > 0 such that for all h ∈ (0, 1] and for all face
e ∈ Eh there exists a point xe ∈ e and a radius ρe ≥ C1diam(e) such that
Bρe(xe)∩Ae ⊂ e, where Ae is the affine hyperplane spanned by e. Moreover,
there are positive constants such that

chκ ≤ he ≤ Chκ, chκ′ ≤ he ≤ Chκ′

where e = κ ∩ κ′.
We use the notation ∼ to compare quantities which differ only up to positive

constants that do not depend on the local or global mesh size or on any function
which appears in the estimate.

Remark 3.3. By the regularity assumption of the mesh we have the following:

�{z ∈ Nh : z ∈ κ} ∼ 1, �{κ ∈ Th : κ ⊂ Tz} ∼ 1,

�{κ′ ∈ Th : κ′ ⊂ Tκ} ∼ 1, �{e ∈ Eh : e ⊂ Tz} ∼ 1, and �{e ∈ Eh : e ⊂ Tκ} ∼ 1.

Remark 3.4. As a consequence, we have that diam(Tκ) ∼ hκ and for each z ∈ κ
and e ⊂ ∂κ, hz ∼ hκ and he ∼ hκ. See the discussion in section 4.2 in [6].

Remark 3.5. By Proposition 2.11, we also have that for each edge e ⊂ ∂κ,

h
p(x)
κ ∼ h

p(y)
e for any x, y ∈ κ. We will replace pκ−, p

e
− by p− and pκ+, p

e
+ by p+ when

no confusion can arise.
Now, we introduce the finite element spaces associated with Th. We define the

variable broken Sobolev space as

W 1,p(·)(Th) := {u ∈ L1(Ω): u|κ ∈ W 1,p(·)(κ)∀κ ∈ Th}

and the subspaces

Uk(Th) := {u ∈ C(Ω): u|κ ∈ P k ∀κ ∈ Th},
Sk(Th) := {u ∈ L1(Ω): u|κ ∈ P k ∀κ ∈ Th},

where P k is the space of polynomial functions of degree at most k ≥ 1.
We also define, for any κ ∈ Th, the space

W 1,p(·)(Tκ) := {u|Tκ : u ∈ W 1,p(·)(Th)},

and in the same manner we define the spaces W 1,p(·)(Tz) and W 1,p(·)(Te) for any
z ∈ Nh and e ∈ Eh.

For each face e ∈ Eh, e ⊂ Γint, we denote by κ+ and κ− its neighboring elements.
We write ν+, ν− to denote the outward normal unit vectors to the boundaries ∂κ±,
respectively. The jump of a function u ∈ W 1,p(·)(Th) and the average of a vector-
valued function φ ∈ (W 1,p(·)(Th))N with traces u±, φ± from k± are, respectively,
defined as the vectors

[[u]] := u+ν+ + u−ν− and {φ} :=
φ+ + φ−

2
.

Let h : ∂Ω ∪ Γint → R be a piecewise constant function defined by

h(x) = diam(e) if x ∈ e,

where e ∈ Eh.
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We consider the following seminorms on W 1,p(·)(Th):

|u|W 1,p(·)(Th) = ‖∇u‖Lp(·)(Ω) + ‖[[u]]h
−1

p′(x) ‖Lp(·)(Γint),

|u|
W

1,p(·)
D (Th)

= |u|W 1,p(·)(Th) + ‖uh
−1

p′(x) ‖Lp(·)(ΓD);

and we consider the local seminorm

|u|W 1,p(·)(Tκ) = ‖∇u‖Lp(·)(Tκ) +
∑
e⊂Tκ

‖[[u]]h
−1

p′(x) ‖Lp(·)(e)

for any κ ∈ Th. Similarly, we define the seminorms |u|W 1,p(·)(Tz) and |u|W 1,p(·)(Te) for
any z ∈ Nh and e ∈ Eh .

Lemma 3.6. For all p : [1,∞) → R, there exists a constant C independent of h
such that

|Du|(Ω) ≤ C|u|W 1,p(·)(Th) ∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

Proof. For all u ∈ W 1,p(·)(Th), we have that

|Du|(Ω) ≤
∫
Ω

|∇u| dx+

∫
Γint

|[[u]]| ds.

Thus, by the Hölder inequality, Proposition 2.1(5) and Hypothesis 3.2, there exists a
constant C depending only on |Ω|, p1, and p2 such that

|Du|(Ω) ≤ C
(
‖∇u‖Lp(·)(Ω) + ‖h

−1
p′(x) [[u]]‖Lp(·)(Γint)

)
.

The proof is now complete.
Lemma 3.7. Let (Th)h∈(0,1] be a family of partitions of Ω. Then, for each function

p, q : Ω → [1,∞), there exists a constant C > 0 independent of h such that for any
κ ∈ Th

‖u‖Lp(·)(κ) ≤ Ch
N
p+

− N
q−

κ ‖u‖Lq(·)(κ) ∀u ∈ Sk(Th) ∀h ∈ (0, 1].

Proof. Let κ ∈ Th, κ̂ its corresponding reference element, and Fκ : κ̂ → κ the
associated affine mapping. We set J = | det(DFκ)|. Using Hypothesis 3.2, we have
C−1hN

κ ≤ J ≤ ChN
κ for some constant C which is independent of κ. Let K > 0; then

we have∫
κ

(
|u|
K

)p(x)

dx =

∫
κ̂

(
|u ◦ Fκ|

K

)p◦Fκ(x)

J dx ≤ ChN
κ

∫
κ̂

(
|u ◦ Fκ|

K

)p◦Fκ(x)

dx.

Thus,

‖(ChN
κ )−1/p(x)u‖Lp(·)(κ) ≤ ‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

Using that hκ � 1, we obtain

(3.1) ‖u‖Lp(·)(κ) ≤ (ChN
κ )1/p+‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

Similarly, we have

(3.2) ‖u ◦ Fκ‖Lq◦Fκ(·)(κ̂) ≤ (Ch−N
κ )1/q−‖u‖Lq(·)(κ).
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Because on a finite dimensional space all the norms are equivalent, we have that
there exists a constant C̄ depending only on N and k such that

(3.3) ‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂) ≤ C‖u ◦ Fκ‖Lp2(κ̂) ≤ C‖u ◦ Fκ‖Lq1(κ̂) ≤ C̄‖u ◦ F‖Lq(·)(κ̂),

where in the first and last inequalities we are using Theorem 2.2.
Finally, by (3.1)–(3.3) we arrive at the desired result.
Lemma 3.8. If p is log-Hölder continuous, then, for any e ∈ Eh ∩ ∂Ω and

z ∈ Nh ∩ e we have that

(3.4) ‖u‖Lp(·)(e) ≤ Ch
− 1

p−
z ‖u‖Lp(·)(Tz) ∀u ∈ Sk(Th),

where C = C(p1, p2, N,Ω, Clog).
Proof. Let κ ∈ Th such that e ⊂ κ. Let Fκ and κ̂ be as in the proof of Lemma 3.7

and let ê = F−1
κ (e).

Then, ∫
e

(
|u(x)|
k

)p(x)

dS ≤ ChN−1
κ

∫
ê

(
|u ◦ Fκ(x)|

k

)p◦Fκ(x)

dS.

Hence, ∥∥∥(C−1hκ)
1

p(x)
u

h
N/p(x)
κ

∥∥∥
Lp(·)(e)

≤ ‖u ◦ Fκ‖Lp◦Fκ(·)(ê).

By using Theorem 2.2 and that all the norms are equivalent, we have

‖u ◦ Fκ‖Lp◦Fκ(·)(ê) ≤ C‖u ◦ Fκ‖Lp2(ê) ≤ C‖u ◦ Fκ‖L1(ê).

On the other hand, by the local inverse estimate in [6, p. 837], we have

‖u ◦ Fκ‖L1(ê) ≤ C‖u ◦ Fκ‖L1(κ̂).

By again using Theorem 2.2, we obtain

‖u ◦ Fκ‖L1(κ̂) ≤ C‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

By using all the inequalities and the definition of the Luxembourg norm, we arrive at∥∥∥hκ

1
p(x)

u

h
N/p(x)
κ

∥∥∥
Lp(·)(e)

≤ C
∥∥∥ u

h
N/p(x)
κ

∥∥∥
Lp(·)(κ)

.

Finally, we obtain

‖hκ

1
p(x) u‖Lp(·)(e) ≤ Ch

N(p−−p+)

p−p+
κ ‖u‖Lp(·)(κ),

By Remark 2.11, we get

‖hκ

1
p(x) u‖Lp(·)(e) ≤ Ce

N C

p2
1 ‖u‖Lp(·)(κ).

Now, inequality (3.4) follows immediately using Proposition 2.1(3) and the fact
that hz ∼ hκ.

The next result establishes the existence of the local projector operator. (For the
proof see subsection 3.1 of [6].)

Lemma 3.9. For all z ∈ Nh there exists a linear map πz : BV (Ω) → R such that

‖u− πz(u)‖L1(Tz) ≤ Chz|Du|(Tz) ∀u ∈ BV (Ω),

where C is a constant independent of h and z.
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4. The reconstruction operator Qh. In many discontinuous Galerkin prob-
lems one uses a priori bounds in order to prove the Poincaré inequality for the discrete
space. In order to prove these inequalities a reconstruction operator is needed. In this
section we define, as in [6], a family of quasi-interpolant operators and prove some
error estimates depending on the mesh size. These results are more general than the
ones in [6], because we prove bounds in the variable p(x)-norm. On the other hand,
these results are less general than the ones in [4] in the sense that they only cover
the case of the finite dimensional space Sk(Th). This last restriction comes from the
fact that in Lemma 3.7 we need to use the equivalence of the norms in the space of
polynomials.

In order to prove these error estimates we strongly use Proposition 2.11. This is
why we need p to be log-Hölder continuous.

Now, we define and study the reconstruction operator. For each h ∈ (0, 1], let

Qh : S
k(Th) → W 1,∞(Ω)

be the linear operator defined by

Qh(u) =
∑
z∈Nh

πz(u)λz ,

where λz is the standard P 1 nodal basis function associated with the vertex z on the
mesh Th.

In the next theorem, we give some local estimates of the Lq(·)(κ) and Lq(·)(e)
norms in terms of the W 1,p(·)(Tκ) seminorm and h.

Theorem 4.1. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Then, the
operator Qh satisfies

‖u−Qh(u)‖Lq(·)(κ) ≤ Ch
N
q− − N

p− +1

κ |u|W 1,p(·)(Tκ) ∀κ ∈ Th,(4.1)

‖u−Qh(u)‖Lq(·)(e) ≤ Ch
N−1
q− − N

p− +1

e |u|W 1,p(·)(Te) ∀e ∈ Eh ∩ ∂Ω,(4.2)

‖∇Qh(u)‖Lp(·)(κ) ≤ C|u|W 1,p(·)(Tκ) ∀κ ∈ Th(4.3)

for all u ∈ Sk(Th), where C is a constant independent of h.
Proof. We proceed in three steps.
Step 1. We first show inequality (4.1).
Fix κ ∈ Th. For z ∈ Nh ∩ κ, by using Proposition 2.1(6) and Lemma 3.7, we get

‖u− πz(u)‖Lq(·)(Tz) ≤ C
∑

{κ′:κ′⊂Tz}
h

N
q+

−N

κ′ ‖u− πz(u)‖L1(κ′).

By Remark 3.4 and Proposition 2.11, we get

‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q− −N

z ‖u− πz(u)‖L1(Tz).

Thus, by Lemma 3.9, we have

‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q− −N+1

z

(
‖∇u‖L1(Tz) +

∑
e⊂Tz

∫
e

|[[u]]| ds
)
.
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Then, by again using Lemma 3.7 and Remark 3.3 we have

(4.4) ‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q− +1

z

(
h
− N

p−
z ‖∇u‖Lp(·)(Tz) + h−N

z

∑
e⊂Tz

∫
e

|[[u]]| ds
)
.

To estimate the second term, we use the Hölder inequality, obtaining

(4.5)

∫
e

|[[u]]| ds ≤ 2‖ [[u]]h
− 1

p′(x)
e ‖Lp(·)(e)‖h

1
p′(x)
e ‖Lp′(·)(e)

≤ C‖ [[u]]h
− 1

p′(x)
e ‖Lp(·)(e)h

1− 1
p−

e ‖1‖Lp′(·)(e).

Now, by Proposition 2.1(5), we have that

‖1‖Lp′(·)(e) ≤ Ch
(N−1)(1− 1

p− )

e .

Then, we obtain ∫
e

|[[u]]| ds ≤ C‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e)h

N(1− 1
p− )

z .

Therefore, summing over all e ⊂ Tz and using (4.4), we arrive at

(4.6) ‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q− − N

p− +1

z |u|W 1,p(·)(Tz).

Now, as in the proof Theorem 3.1 in [6] and using Proposition 2.1(6), we have
the inequality (4.1).

Step 2. We now show the inequality (4.2).
Fix e ∈ Eh ∩ ∂Ω and let z ∈ Nh ∩ e. By the inequality (3.4),

‖u− πz(u)‖Lq(·)(e) ≤ Ch
− 1

q−
z ‖u− πz(u)‖Lq(·)(Tz).

Again, following the lines in [6] and using that p and q are log-Hölder continuous in
Ω, we arrive at the inequality (4.2).

Step 3. Finally, we will show the inequality (4.3).
Fix κ ∈ Th. First, since (λz)z∈Nh∩κ is a partition of the unity in κ we have that

for any x ∈ κ

∇Qhu(x)−∇u(x) =
∑

z∈Nh∩κ

(πz(u)− u(x))∇λz(x) +
∑

z∈Nh∩κ

∇u(x)λz(x)

‖∇Qhu‖Lp(·)(κ) ≤
∑

z∈Nh∩κ

‖(πz(u)− u)∇λz‖Lp(·)(κ) +
∑

z∈Nh∩κ

‖∇uλz‖Lp(·)(κ)

+ ‖∇u‖Lp(·)(κ).

Now, using Hypothesis 3.2, we have that there exists a constant C1 such that |∇λz | <
C1h

−1 in κ, and by (4.6) we get, using Remark 3.3,

‖∇Qhu‖Lp(·)(κ) ≤ C
∑

z∈Nh∩κ

|u|W 1,p(·)(Tz) + |u|W 1,p(·)(Tκ) ≤ (C + 1)|u|W 1,p(·)(Tκ).

The proof is now complete.
Our next aim is to prove some global estimates. To this end we will need some

definitions.
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Definition 4.2. Let p : Ω → [1,∞). Given q : Ω → [1,∞) and q ≤ p∗ in Ω, we
define

γ = sup

{
q(x)

p∗(x)
: x ∈ Ω

}
.

Observe that 0 ≤ γ ≤ 1 and γ = 0 if p(x) ≥ N for all x ∈ Ω and γ = 1 if p(x) < N
and q(x) = p∗(x) for all x ∈ Ω.

Definition 4.3. Let p : Ω → [1,∞). Given q : Ω → [1,∞) and q ≤ p∗ in Ω, we
define

β = sup

{
q(x)

p∗(x)
: x ∈ Ω

}
.

Observe that 0 ≤ β ≤ 1 and β = 0 if p(x) ≥ N for all x ∈ Ω and β = 1 if
p(x) < N and q(x) = p∗(x) for all x ∈ Ω.

Lemma 4.4. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Let u ∈ Sk(Th)
satisfy

(4.7) |u|W 1,p(·)(Th) ≤ 1.

Then, we have the following:
• If p ≤ q ≤ p∗ in Ω, then∫

Ω

|u−Qh(u)|q(x) dx ≤ ChN(1−γ),(4.8) ∫
Ω

|∇Qh(u)|p(x) dx ≤ C.(4.9)

• If p ≤ q ≤ p∗ in Ω, then

(4.10)

∫
∂Ω

|u−Qh(u)|q(x) dS ≤ Ch(N−1)(1−β),

where C = C(p1, p2,Ω, Clog, N) and γ and β are given in Definitions 4.2 and 4.3,
respectively.

Proof. First observe that by (4.1) we have∫
κ

|u−Qh(u)|q(x)(
Ch

N
q− − N

p− +1

k |u|W 1,p(·)(Tκ)

)q(x)
dx ≤ 1 ∀κ ∈ Th,

and by (4.7) we get

1

Ch
N−Nq−

p− +q−
k |u|q−

W 1,p(·)(Tκ)

∫
κ

|u−Qh(u)|q(x)dx ≤ 1 ∀κ ∈ Th.

Then, by Proposition 2.11,∫
κ

|u−Qh(u)|q(x) dx ≤ Ch
N−Nq−

p− +q−
κ |u|q−

W 1,p(·)(Tκ)
≤ Ch

N−Nq(x)
p(x) +q(x)

κ |u|q−
W 1,p(·)(Tκ)
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for any κ ∈ Th and x ∈ κ. Therefore,

(4.11)

∫
κ

|u−Qh(u)|q(x) dx ≤ ChN(1−γ)|u|q−
W 1,p(·)(Tκ)

∀κ ∈ Th.

On the other hand, by Remark 3.3, the number of κ ⊂ Tκ is uniformly bounded
in h. Using this fact and Proposition 2.1(6), we have that

(4.12) |u|q−
W 1,p(·)(Tκ)

≤ C
∑
κ⊂Tκ

(
‖∇u‖q−

Lp(·)(κ) + ‖[[u]]h
1−p
p ‖q−

Lp(·)(κ∩Γint)

)
.

On the other hand, if we suppose that ‖∇u‖Lp(·)(κ) ≥ h
N/q−
κ , by Proposition

2.11(2), we have that

(4.13) ‖∇u‖q−
Lp(·)(κ) ≤ C‖∇u‖q+

Lp(·)(κ).

Arguing as before, if ‖[[u]]h
1−p
p ‖Lp(·)(κ∩Γint) ≥ h

N/q−
κ , we have that

(4.14) ‖[[u]]h
1−p
p ‖q−

Lp(·)(κ∩Γint)
≤ C‖[[u]]h

1−p
p ‖q+

Lp(·)(κ∩Γint)
.

Now, we take

A =
{
κ ∈ Th : ‖∇u‖Lp(·)(κ) ≥ hN/q−

κ

}
and

B =
{
κ ∈ Th : ‖[[u]]h

1−p
p ‖Lp(·)(κ∩Γint) ≥ hN/q−

κ

}
.

Observe that

(4.15)

∑
κ∈Ac

‖∇u‖q−
Lp(·)(κ) ≤

∑
κ∈Ac

hN
κ ≤ C,

∑
κ∈Bc

‖[[u]]h
1−p
p ‖q−

Lp(·)(κ∩Γint)
≤ C.

On the other hand, by hypothesis (4.7) we have that ‖∇u‖Lp(·)(κ) ≤ 1 and then
for all κ ∈ Th

(4.16)

‖∇u‖q+
Lp(·)(κ) ≤ ‖∇u‖p+

Lp(·)(κ) ≤
∫
κ

|∇u|p(x) dx,

‖[[u]]h
1−p
p ‖q+

Lp(·)(κ∩Γint)
≤
∫
κ∩Γint

|[[u]]|p(x)h1−p(x) dx.

Since each κ appears only in finitely many sets Tκ′ we have, by (4.12)–(4.16),

∑
κ∈Th

|u|q−
W 1,p(·)(Tκ)

≤ C

(∑
κ∈A

‖∇u‖q+
Lp(·)(κ) +

∑
κ∈Ac

‖∇u‖q−
Lp(·)(κ)

)

+ C

(∑
κ∈B

‖[[u]]h
1−p
p ‖q+

Lp(·)(κ∩Γint)
+
∑
κ∈Bc

‖[[u]]h
1−p
p ‖q−

Lp(·)(κ∩Γint)

)

≤ C

(∑
κ∈A

∫
κ

|∇u|p(x) dx +
∑
κ∈B

∫
κ∩Γint

|[[u]]|p(x)h1−p(x) ds+ 1

)

= C

(∫
Ω

|∇u|p(x) dx+

∫
Γint

|[[u]]|p(x)h1−p(x) ds+ 1

)
.
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Thus, by (4.7) and (4.11) we get∫
Ω

|u −Qh(u)|q(x) dx =
∑
κ∈Th

∫
κ

|u−Qh(u)|q(x) dx ≤ ChN(1−γ).

Finally, using the same argument, (4.2), and (4.3), we get∫
∂Ω

|u−Qh(u)|q(x) dS ≤ Ch(N−1)(1−β) and

∫
Ω

|∇Qh(u)|p(x) dx ≤ C,

where C is independent of h.
The following corollary follows immediately.
Corollary 4.5. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Then, for

all u ∈ Sk(Th), we have the following:
• If p ≤ q ≤ p∗ in Ω, then∫

Ω

|u−Qh(u)|q(x) dx ≤ ChN(1−γ)max
{
|u|q1

W 1,p(·)(Th)
, |u|q2

W 1,p(·)(Th)

}
,(4.17) ∫

Ω

|∇Qh(u)|p(x) dx ≤ Cmax
{
|u|p1

W 1,p(·)(Th)
, |u|p2

W 1,p(·)(Th)

}
.(4.18)

• If p ≤ q ≤ p∗ in Ω, then
(4.19)∫

∂Ω

|u−Qh(u)|q(x) dS ≤ Ch(N−1)(1−β)max
{
|u|q1

W 1,p(·)(Th)
, |u|q2

W 1,p(·)(Th)

}
.

In equations (4.17), (4.18), and (4.19), the constant C = C(p1, p2,Ω, Clog, N) and γ
and β are given in Definitions 4.2 and 4.3, respectively.

Proof. It follows by Lemma 4.4, taking v = u|u|−1
W 1,p(·)(Th)

.

Remark 4.6. Under the same hypothesis of the last corollary, if 1 ≤ q ≤ p∗ in Ω,
we have that for all u ∈ Sk(Th),

‖u−Qh(u)‖Lq(·)(Ω) ≤ ChN(1−γ)|u|W 1,p(·)(Th) and ‖∇Qh(u)‖Lp(·)(Ω) ≤ C|u|W 1,p(·)(Th),

where C = C(p1, p2,Ω, Clog, N).

5. The lifting operator. We begin this section by defining, as in [6] (see also
[1]), the lifting operator.

Definition 5.1. Let l ≥ 0 and Rh : W
1,p(·)(Th) → Sl(Th)N be defined as∫

Ω

〈Rh(u), φ〉 dx = −
∫
Γint

〈[[u]], {φ}〉 dS ∀φ ∈ Sl(Th)N .

This operator appears in the first term of the discretized functional Ih. As we
can see from the definition, this operator represents the contribution of the jumps to
the distributional gradient. This is why it is crucial to add this term in order to have
the consistency of the method.

We point out that this lifting operator was first used in [2] in order to describe
the contributions of the jumps across the interelements of the computed solution
on the (computed) gradient of the solution in a mixed formulation of Navier–Stokes
equations. It was also used in [5], where a solid mathematical background for the
method introduced in [2] was proposed.
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Now, we give a bound of the Lp(·)(Ω)-norm of Rh(u) in terms of the jumps of u
in Γint.

When p is constant the proof follows from an inf-sup condition. Since in our case
we are dealing with the Luxemburg norm, we can’t prove the boundedness directly
from the definition. We can prove this inf-sup condition, but we cannot use it to prove
the result. Instead, we find a local characterization of Rh in order to prove a local
bound and then we prove the global bound.

We first give the local estimate.
Lemma 5.2. There exists a constant C1 such that for any κ ∈ Th, we have

‖Rh(u)‖Lp(·)(κ) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(κ∩Γint) ∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

Proof. We proceed in two steps.
Step 1. We first want to prove that

(5.1) |Rh(u)| ≤
C

hN
κ

∑
e⊂κ

∫
e

|[[u]]| dS ∀κ ∈ Th,

where C is independent of κ and h.
We begin by observing that by Hypothesis 3.1 there exists m = m(k,N) ∈ N such

that for each κ ∈ Th,

Rh(u)|κ ◦ Fκ =
m∑
i=1

aiϕi(x),

where {ϕi} is the standard nodal base of (P l)N in the reference element κ̂ := F−1
κ (κ).

Using the definition of Rh we have that for each 1 ≤ j ≤ m,

∫
Ω

Rh(u)ϕj ◦ F−1
κ (x) dx =

m∑
i=1

ai

∫
κ

ϕi ◦ F−1
κ (x)ϕj ◦ F−1

κ (x) dx

= −
∑
e⊂κ

∫
e

[[u]]{ϕj ◦ F−1
κ (x)} dS.

On the other hand, if we change variables and we use Hypothesis 3.2 and the fact
that |ϕi(x)| ≤ 1, we get∫

κ

ϕi ◦ F−1
κ (x)ϕj ◦ F−1

κ (x) dx = hN
κ

∫
κ̂

ϕi(x)ϕj(x)
| det(DFκ)|

hκ
N

dx = hN
κ dij

with dij ∼ 1.
Therefore,

Rh(u)|κ ◦ Fκ =
1

hN
κ

m∑
i=1

(D−1b)iϕi(x) dx,

where D = (dij) and bj = −
∑

e⊂κ

∫
e
[[u]]{ϕj ◦ F−1

κ (x)} dS.
Thus, using that |ϕi(x)| ≤ 1, we arrive at (5.1).
Step 2. Now we show that there exists a constant C1 such that for any κ ∈ Th,

we have

‖Rh(u)‖Lp(·)(κ) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(κ∩Γint) ∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].
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By inequality (4.5), we have∫
e

|[[u]]| ds ≤ Ch
N(1− 1

p− )

e ‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e).

Thus, by Hypothesis 3.2 and (5.1), we have that

|Rh(u)| ≤
C

h
N/p−
κ

∑
e⊂κ

‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e).

Now, take T =
∑

e∈κ ‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e). Then,∫

κ

∣∣∣Rh(u)

T

∣∣∣p(x) dx ≤ C

∫
κ

h−Np(x)/p−
κ dx ≤ ChN(1−p+/p−)

κ ≤ C,

where in the last inequality we are using Proposition 2.11.
The result follows now by Remark 3.3.
Lemma 5.3. Let p : Ω → : [1,∞) be log-Hölder continuous in Ω. Then, there

exists a constant C such that

‖Rh(u)‖Lp(·)(Ω) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(Γint) ∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

Proof. First, if we assume that ‖h−1/p′(x)[[u]]‖Lp(·)(Γint) ≤ 1, we can prove using
Lemma 5.2 and proceeding as in Lemma 4.4 that∫

Ω

|Rh(u)|p(x) dx ≤ C.

Finally, by taking v = u(‖h−1/p′(x)[[u]]‖Lp(·)(Γint))
−1, we obtain the desired

result.

6. Convergence of the method. In this section we first prove the broken
Poincaré Sobolev inequality, which is crucial to get compactness. We also prove the
coercivity of the functional and we finally arrive at the proof of Theorem 1.1.

Theorem 6.1. Let p : Ω → [1,+∞) be log-Hölder continuous in Ω. There exists
a constant C such that

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ C|u|W 1,p(·)(Th) ∀u ∈ Sk(Th) ∀h ∈ (0, 1],

where (u)Ω = 1
|Ω|
∫
Ω u dx. In particular,

‖u‖Lp∗(·)(Ω) ≤ C
(
‖u‖L1(Ω) + |u|W 1,p(·)(Th)

)
∀u ∈ Sk(Th) ∀h ∈ (0, 1].

Proof. We begin by observing that

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ ‖u−Qh(u)‖Lp∗(·)(Ω) + ‖Qh(u)− (Qh(u))Ω‖Lp∗(·)(Ω)

+C‖Qh(u)− u‖L1(Ω).

Then, using Remark 4.6 and Theorem 2.8, we have

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ C|u|W 1,p(·)(Th) ∀u ∈ Sk(Th) ∀h ∈ (0, 1].

The proof is complete.

��
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Theorem 6.2. For each h ∈ (0, 1], let uh ∈ W 1,p(·)(Th). If there exists a constant
C independent of h such that Ih(uh) ≤ C for all h ∈ (0, 1], then

sup
h∈(0,1]

(
‖uh‖L1(Ω) + |uh|W 1,p(·)(Th)

)
< ∞.

Moreover,

sup
h∈(0,1]

∫
∂Ω

|uh − uD|p(x)h1−p(x) dS < ∞.

Proof. Since Ih(uh) ≤ C, then ‖h−1/p′(x)[[uh]]‖Lp(·)(Γint) ≤ C. And, by Lemma 5.3
and Proposition 2.1, we have ∫

Ω

|Rh(uh)|p(x) dx ≤ C.

Using the third inequality in Proposition 2.5 and the above inequality, we get∫
Ω

|Rh(uh) +∇uh|p(x) dx ≥ 21−p2

∫
Ω

|∇uh|p(x) dx− C.

Therefore,

Ih(uh) + C ≥ 21−p2

∫
Ω

|∇uh|p(x) dx+

∫
ΓD

|uh − uD|p(x)h1−p(x) dS

+

∫
Γint

|[[uh]]|p(x)h1−p(x) dS.

Thus, as Ih(uh) ≤ C, we obtain that |uh|W 1,p(·)(Th) and
∫
∂Ω

|uh − uD|p(x)h1−p(x) dS
are uniformly bounded.

Finally, by the Friedrichs inequality for BV, Lemma 3.6, the Hölder inequality,
Proposition 2.1, and the fact that h ≤ 1, we have

‖uh‖L1(Ω) ≤ C

(
|uh|W 1,p(·)(Th) +

∫
ΓD

|uh| dS
)

≤ C

(
|uh|W 1,p(·)(Th) +

∫
ΓD

|uD| dS

+ ‖(uh − uD)h
−1/p′(x)‖Lp(·)(ΓD)‖h1/p′(x)‖Lp′(·)(ΓD)

)

≤ C

(
|uh|W 1,p(·)(Th) +

∫
ΓD

|uD| dS + ‖(uh − uD)h−1/p′(x)‖Lp(·)(ΓD)

)
.

This completes the proof.
Lemma 6.3. Let p, s, and t be functions satisfying (H1), (H2), and (H3), respec-

tively. Let uh ∈ Sk(Th) be under the conditions of Theorem 6.2. Then, there exist a
sequence hj → 0 and a function u ∈ W 1,p(·)(Ω) such that

uhj

∗
⇀ u weakly* in BV (Ω),(6.1)

∇uhj +Rh(uhj ) ⇀ ∇u weakly in Lp(·)(Ω),(6.2)

uhj → u strongly in Ls(·)(Ω),(6.3)

uhj → u strongly in Lt(·)(∂Ω).(6.4)
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Proof. We first observe that by Theorem 6.2 we have that

sup
h∈(0,1]

(‖uh‖L1(Ω) + |uh|W 1,p(·)(Th)) < ∞ ∀h ∈ (0, 1].

Then, the proofs of (6.1) and (6.2) follow by applying Theorem 5.2 in [6] with value
p1 and using that Rh(uh) is bounded in Lp(·)(Ω); see Lemma 5.3.

We now prove (6.3). By (6.1) and the compactness of the embedding BV (Ω) ⊂
L1(Ω), there exists a subsequence of uhj , still denoted by uhj , such that

uhj → u in L1(Ω).

Since ‖uhj‖L1 + |uhj |W 1,p(·)(Th) is bounded, by Theorem 6.1 ‖uhj‖Lp∗(·)(Ω) is bounded,

and by Theorem 2.9 u ∈ W 1,p(·)(Ω) ⊂ Lp∗(·)(Ω). Therefore, using Theorem 2.3, we
obtain that

(6.5) uhj → u in Ls(·)(Ω)

for all s satisfying (H2).
Finally, we prove (6.4). We begin by observing that by Corollary 4.5,

(6.6) ‖uh −Qh(uh)‖Lp(·)(Ω) → 0 as h → 0

and {Qh(uh)} is bounded in W 1,p(·)(Ω). Then, there exists v ∈ W 1,p(·)(Ω) and subse-
quence {Qhj(uhj )} such that Qhj (uhj ) ⇀ v weakly in W 1,p(·)(Ω). Therefore, by (6.5)
and (6.6), v = u.

Using Theorem 2.10,

(6.7) Qhj(uhj ) → u strongly in Lt(·)(∂Ω).

Now, taking t̄ : Ω → [1,∞) log-Hölder with t ≤ t̄ < p∗ and by Corollary 4.5, we
get Qhj (uhj )− uhj → 0 strongly in Lt(·)(∂Ω). Therefore, uhj → u in Lt(·)(∂Ω).

Before proving the convergence of the minimizers, we need an auxiliary lemma.
It is in this step where we need more regularity of the boundary data.

Lemma 6.4. Let h ∈ (0, 1], and p : Ω → (1,∞) satisfying (H1). Assume that
uD ∈ W 2,p2(Ω) and let v ∈ W 2,p2(Ω) ∩ A; then there exists vh ∈ U1(Th) such that

‖vh − v‖W 1,p(·)(Ω) → 0 as h → 0

and

Ih(vh) → I(v) as h → 0.

Proof. Since p is log-Hölder, we have that C∞(Ω̄) are dense in W 1,p(·)(Ω). Then
the first part follows by standard approximation theory; see Theorem 3.1.5 in [9].

Moreover, vh satisfies

(6.8) ‖v − vh‖Lp2(∂κ) ≤ C‖v − vh‖W 1,p2 (κ) ≤ Chκ‖D2v‖Lp2(κ)

for each κ ∈ Th. Using Remark 3.4 and summing over all e ∈ ∂Ω, we have

(6.9)

∫
∂Ω

|v − vh|p2h1−p2 ds ≤ Ch‖D2v‖p2

Lp2(Ω).
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In addition, by the Hölder inequality and since h ≤ 1, we have∫
∂Ω

|v − vh|p(x)h1−p(x) ds ≤ C‖|v − vh|p(·)h(1−p2)p(·)/p2‖Lp2/p(·)(∂Ω).

Since ∫
∂Ω

(|v − vh|p(x)h(1−p2)p(x)/p2)p2/p(x) ds =

∫
∂Ω

|v − vh|p2h(1−p2) ds,

then by (6.9) ∫
∂Ω

|v − vh|p(x)h1−p(x) ds → 0 as h → 0.

Since vh ∈ W 1,p(·)(Ω), then [[vh]] = 0 and Rh(vh) = 0. Finally, using (6.8) and
Theorem 2.6, we obtain the desired result.

Now, we are in a condition to prove Theorem 1.1.
Proof of Theorem 1.1. By Lemma 6.4 there exist wh ∈ U1(Th) such that wh → uD

strongly in W 1,p(·)(Ω) and Ih(wh) → I(uD). Therefore, since Ih(uh) ≤ Ih(wh), we
have that Ih(uh) is bounded.

Then, by Theorem 6.2 and Lemma 6.3 there exist a subsequence uhj and u ∈
W 1,p(·)(Ω) such that

(6.10)

uhj

∗
⇀ u weakly* in BV (Ω),

∇uhj +Rh(uhj ) ⇀ ∇u weakly in Lp(·)(Ω),

uhj → u strongly in Ls(·)(Ω) ∀s satisfying (H2),

uhj → u strongly in Lt(·)(∂Ω) ∀t satisfying (H3).

On the other hand, since the penalty term∫
ΓD

h1−p|uh − uD|p dS

is bounded, we have that

‖u− uD‖Lp(·)(ΓD) ≤ ‖u− uhj‖Lp(·)(ΓD) + ‖uhj − uD‖Lp(·)(ΓD) → 0.

Then u ∈ A.
Taking s = q and t = r in (6.10), by Proposition 2.6 we have

(6.11)

I(u) ≤ lim inf
j→∞

[∫
Ω

(
|∇uhj +Rh(uhj )|p(x) + |uhj − ξ|q(x)

)
dx+

∫
ΓN

|uhj |r(x) dS
]

≤ lim inf
j→∞

Ihj (uhj) ≤ lim sup
j→∞

Ihj (uhj ).

Now, we want to prove that u is the minimizer of I. Let v ∈ A ∩W 2,p2(Ω), and
let vh ∈ U1(Th) as in Lemma 6.4. Then Ih(vh) → I(v). Therefore, by (6.11)

(6.12) I(u) ≤ lim inf
j→∞

Ihj (uhj ) ≤ lim sup
j→∞

Ihj (uhj) ≤ lim
j→∞

Ihj (vhj ) = I(v).
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Now, let w ∈ A; then for any ε > 0 there exists v ∈ A ∩ W 2,p2(Ω) such that
‖v − w‖W 1,p(·)(Ω) < ε. By Theorem 2.6 we have that I(v) < I(w) + ε; therefore by
(6.12)

I(u) ≤ lim inf
j→∞

Ihj (uhj ) ≤ lim sup
j→∞

Ihj (uhj ) ≤ I(w) + ε.

Taking ε → 0, we get

I(u) ≤ lim inf
j→∞

Ihj (uhj ) ≤ lim sup
j→∞

Ihj (uhj) ≤ I(w) ∀w ∈ A.

Therefore I(u) ≤ I(w).
Moreover, taking w = u, we have that all the inequalities in (6.11) are equalities;

therefore we have that Ihj (uhj ) → I(u). Then∫
Γint

|[[uhj ]]|p(x)hj
1−p(x) dS → 0

and using Lemma 5.3 we have that Rh(uhj ) → 0. This fact and (6.10) imply that

∇uhj ⇀ ∇u weakly in Lp(·)(Ω).
Since u is the unique minimizer of I, the whole sequence uh converges to u.
Finally, since

∇uh+Rh(uh) ⇀ ∇u weakly in Lp(·)(Ω) and

∫
Ω

(|∇uh+Rh(uh)|p(x) dx →
∫
Ω

|∇u|p(x) dx,

by Proposition 2.6, ∇uh + Rh(uh) → ∇u strongly in Lp(·)(Ω). Therefore, since
Rh(uh) → 0 strongly in Lp(·)(Ω), we get that ∇uh → ∇u strongly in Lp(·)(Ω).

7. The continuous Galerkin method. In order to make a complete study
of this problem, we prove the convergence of the continuous Galerkin finite element
method (CGFEM) for our problem. In the next section, we make a comparison of the
two methods in an example.

For simplicity, we take the following functional:

I(u) =

∫
Ω

(
|∇u|p(x)
p(x)

+
|u− ξ|q(x)

q(x)

)
dx

with q(x) satisfying (H2). Then, since the functional I is strictly convex and coercive
in A, there exists a unique minimizer of the problem.

We take now a partition of Ω as in Hypothesis 3.1 and the usual conforming
subspace Uk(Th) of W 1,p(·)(Ω). This subspace consists of all continuous functions
such that they are polynomials of degree at most k in each κ ∈ Th . We assume that
for some h′, uD ∈ Uk(Th′). (This assumption replaces the one in Lemma 6.4.)

Let now h ≤ h′ and

V k
h = {vh ∈ Uk(Th) : vh = uD on ∂Ω}.

For simplicity, we may assume that h′ = 1.
Remark 7.1. Let Πh : C∞

0 (Ω) → Uk
h be the interpolant mapping defined in

Theorem 3.1.5 in [9]. Then, we have that

‖Πhφ− φ‖W 1,p(·)(Ω) ≤ C‖Πhφ− φ‖W 1,p2 (Ω) → 0
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for any φ ∈ C∞
0 (Ω). We also have by the continuity of I that I(Πhφ+uD) → I(φ+uD)

as h → 0.
By the strict convexity of I, for each h ∈ (0, 1] there exists a function uh ∈ V k

h

such that uh is a minimizer in V k
h of I.

Now we prove the main result of this section.
Theorem 7.2. The sequence {uh} converges to u strongly in W 1,p(·)(Ω), where

u is the unique minimizer of I.
Proof. Since {I(uh)} is uniformly bounded, there exists a subsequence of {uh}

(still denoted by {uh}) such that

uh ⇀ u weakly in W 1,p(·)(Ω),(7.1)

uh → u strongly in Lp(·)(Ω).(7.2)

As in the proof of Theorem 1.1, using Remark 7.1 instead of Lemma 6.4 we can
prove that u is the minimizer of I and that I(uh) → I(u) as h → 0. By the convexity
of I and (7.1), we have that

(7.3)

∫
Ω

|∇uh|p(x) dx →
∫
Ω

|∇u|p(x) dx as h → 0.

Then, by (7.2) and (7.3), using Proposition 2.6(3), we have that {uh} converges to u
strongly in W 1,p(·)(Ω).

Observe that, as in Theorem 1.1, we can conclude that the whole sequence {uh}
converges to u strongly in W 1,p(·)(Ω).

8. One-dimensional example. In this section, we give an example in one di-
mension. Our idea is to compare the CGFEM and the discontinuous Galerkin finite
element method (DGFEM). We will see in the following example that if the function
p attains values close to one, our method converges faster to the solution.

Let Ω = (−1, 1), 0 < ε, a < 1, and p : [−1, 1] → [1, 2] given by

p(x) =

⎧⎨
⎩

1−ε
a |x|+ 1 + ε if |x| ≤ a,

2 if a ≤ |x| ≤ 1.

For this function p(x) and for a given B > 0, we study the following problem:

(8.1)

{
(|u′(x)|p(x)−1u′(x))′ = 0 in (−1, 1),

u(1) = −u(−1) = B.

We begin by observing that since the operator is strictly monotone, we have a

unique solution of (8.1). Moreover, the solution satisfies |u′(x)| = C
1

(p(x)−1) for some
constant C > 0. Therefore, |u′(x)| > max{C,C1/ε} and, using that u ∈ C1,α([−1, 1]),
we have that u′ does not change sign. Then, since u(1) > u(−1) we obtain that
u′(x) > 0.

Thus,

u(x) = C(x + 1)−B if − 1 ≤ x ≤ −a,(8.2)

u(x) = C(x − 1) +B if a ≤ x ≤ 1.(8.3)

Since p is even, we have that u is odd, so u(0) = 0. Therefore, u(x) =
∫ x

0
C

1
p(s)−1 ds

for all x ∈ [−a, a].



IP-DGFEM METHOD FOR THE p(x)-LAPLACIAN 2519

On the other hand, since the derivative of u at zero has modulus C1/ε, if C > 1
we have

lim
ε→0

|u′(0)| = +∞.

This is reasonable since we expect to have a big derivative when p approaches the
value one.

From now on, we take ε = a = .01 and since it is easier to get B from C, we

impose C = 1.3. Then B =
∫ 1

0 1.3
100

1+999s ds � 1.03 106. Observe that in this case,
|u′(0)| = 1.3100 � 2.4× 1011.

Now, we find the corresponding solution for the CGFEM and the DGFEM. In
both cases we take a uniform partition of [−1, 1] in n subintervals with size 2/n
and k = 1. We use the trapezoidal numerical quadrature to compute the integrals
appearing in the discrete functionals. The analysis of these integration errors falls
beyond the scope of this paper.

Observe that for the continuous method, we impose the boundary conditions, and
then the space where we find minimizers has dimension n− 2. For the discontinuous
method, since we do not impose conditions on the boundary, and the number of nodal
basis are 2n− 2, we are minimizing in a space of this dimension. Therefore, to make
a comparison of the methods, we compare the discrete problem for the DGFEM in
n-intervals with the CGFEM in 2n-intervals.

We want to mention that in order to find minimizers of both discrete problems,
we use a BFGS quasi-Newton method (see [19, 25]).

In Figure 8.1, we plot the solution versus the approximation using DGFEM and
CGFEM for the case n = 41. The second panel in the figure is the graphic of the
function p(x).

Note that when we use the CGFEM the discrete solution is close to the function
y = x which is a solution of (8.1) with p ≡ 2, which means that this method needs a
smaller step in order to see the points where p is close to one.
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In Figure 8.2 (first panel) we can see that the minimizers of the continuous meth-
ods are far from the solution even for n = 150 (300 intervals). We need n = 200 (400
intervals) to arrive at a good approximation of u (second panel of Figure 8.2).
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[4] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer.
Anal., 41 (2003), pp. 306–324.

[5] F. Brezzi, G. Manzini, L.D. Marini, P. Pietra, and A. Russo, Discontinuous Galerkin
approximations for elliptic problems, Numer. Methods Partial Differential Equations, 16
(2000), pp. 365–378.

[6] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications,
IMA J. Numer. Anal., 29 (2009), pp. 827–855.

[7] A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related
problems, Numer. Math., 76 (1997), pp. 167–188.

[8] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image
restoration, SIAM J. Appl. Math., 66 (2006), pp. 1383–1406.

[9] P. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 68, North-
Holland, Amsterdam, 1978.



IP-DGFEM METHOD FOR THE p(x)-LAPLACIAN 2521

[10] L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph.D. thesis,
University of Freiburg, Germany, 2002.

[11] L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl., 7
(2004), pp. 245–253.

[12] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces
Lp(·) and W k,p(·), Math. Nachr., 268 (2004), pp. 31–43.
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