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ERROR ESTIMATES ON ANISOTROPIC @Q; ELEMENTS FOR FUNCTIONS IN
WEIGHTED SOBOLEV SPACES

RICARDO G. DURAN AND ARIEL L. LOMBARDI

ABSTRACT. In this paper we prove error estimates for a piecewise Q; average interpolation on
anisotropic rectangular elements, i.e., rectangles with sides of different orders, in two and three
dimensions.

Our error estimates are valid under the condition that neighboring elements have comparable size.
This is a very mild assumption that includes more general meshes than those allowed in previous
papers. In particular, strong anisotropic meshes arising naturally in the approximation of problems
with boundary layers fall under our hypotheses.

Moreover, we generalize the error estimates allowing on the right hand side some weighted Sobolev
norms. This extension is of interest in singularly perturbed problems.

Finally, we consider the approximation of functions vanishing on the boundary by finite element
functions with the same property, a point that was not considered in previous papers on average
interpolations for anisotropic elements.

As an application we consider the approximation of a singularly perturbed reaction-diffusion
equation and show that, as a consequence of our results, almost optimal order error estimates in the
energy norm, valid uniformly in the perturbation parameter, can be obtained.

1. INTRODUCTION

In the finite element approximation of functions which have singularities or boundary layers it
is necessary to use highly non uniform meshes such that the mesh size is much smaller near the
singularities than far from them. In the case of boundary layers these meshes contain very narrow or
anisotropic elements.

The goal of this paper is to obtain new error estimates for Q; (piecewise bilinear in 2d or trilinear
in 3d) approximations on meshes containing anisotropic rectangular elements, i. e., rectangles with
sides of different orders. The classic error analysis is based on the so called regularity assumption
which excludes this kind of elements (see for example [8, 9]). However, it is now well known that this
assumption is not needed. Indeed, many papers have been written to prove error estimates under more
general conditions. In particular, for rectangular elements we refer to [1, 12, 18] and their references.

We will prove the error estimates for a mean average interpolation. There are two reasons to work
with this kind of approximation instead of the Lagrange interpolation. The first one is to approximate
non smooth functions for which the Lagrange interpolation is not even defined, in fact this is the reason
that motivated the introduction of average interpolations (see [10]). On the other hand, it has already
been observed that, in the three dimensional case, average interpolations have better approximation
properties than the Lagrange interpolation even for smooth functions when narrow elements are used
(see [1, 12]).

Our estimates extend previous known results in several aspects:

First, our assumptions include more general meshes than those allowed in the previous papers.
Indeed, in [12] it was required that the meshes were quasiuniform in each direction. This requirement
was relaxed in [1] but not enough to include the meshes that arise naturally in the approximation
of boundary layers, which will be included under our assumptions. To prove our error estimates we
require only that neighboring elements are of comparable size and so, our results are valid for a rather
general family of anisotropic meshes.
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Second, we generalize the error estimates allowing weaker norms on the right hand side. These
norms are weighted Sobolev norms where the weights are related with the distance to the boundary.
The interest of working with these norms arise in the approximation of boundary layers. Indeed,
for many singular perturbed problems it is possible to prove that the solution has first and second
derivatives which are bounded, uniformly in the perturbation parameter, in appropriate weighted
Sobolev norms.

The use of weighted norms to design appropriate meshes in finite element approximations of singular
problems is a well known procedure. In particular, error estimates for functions in weighted Sobolev
spaces have been obtained in several works (see for example [4, 5, 6, 14]). In those works, the weights
considered are related with the distance to a point or an edge (in the 3d case), instead here we consider
weights related with the distance to the boundary.

Finally, we consider the approximation of functions vanishing on the boundary by finite element
functions with the same property. This is a non trivial point that was not considered in the above
mentioned references.

Our mean average interpolation is similar to that introduced in [12] but the difference is that we
define it directly on the given mesh instead of using reference elements. This is important in order to
relax the regularity assumptions on the elements.

We will prove our estimates for the domain Q = [0,1]¢, d = 2,3. It will be clear that the interior
estimates derived in Section 2 are valid for any domain which can be decomposed in d-rectangles.
However, the extension of our results of Section 3 for interpolations satisfying Dirichlet boundary
conditions to other domains is not straightforward and would require a further analysis.

To prove the weighted estimates we will use a result of Boas and Straube [7] which, as we show,
can be derived from the classic Hardy inequality in higher dimensions.

In Section 2 we construct the mean average interpolation and prove the error estimates for interior
elements. Section 3 deals with the approximation on boundary elements. Since the proofs of this
section are rather technical we give them in the two dimensional case. However, it is not difficult
(although very tedious!) to see that our arguments apply also in three dimensions.

Finally in Section 4, as an application of our results, we consider the finite element approximation
of the reaction diffusion equation

—2Au+u=f in Q
u=0 in 00

Using that appropriate weighted norms of the solution are bounded uniformly in the perturbation
parameter € we show that it is possible to design graded meshes independent of € such that almost
optimal (in terms of the degrees of freedom) error estimates in the energy norm, valid uniformly in &,
hold.

2. ERROR ESTIMATES FOR INTERIOR ELEMENTS

In this section we prove error estimates for a piecewise Q1 mean average interpolation for functions
in weighted Sobolev spaces. The weights considered are powers of the distance to the boundary. This
kind of weights arise naturally in problems with boundary layers.

The approximation introduced here is a variant of that considered in [12]. The difference is that we
define it directly in the given mesh instead of using a reference one. Working in this way we are able
to remove the restrictions used in [1, 12]. In particular, our results apply for the anisotropic meshes
arising in the approximation of boundary layers.

Let 7 be a partition into rectangular elements of 2 = [0,1]¢, d = 2,3. We call N the set of nodes
of T and MN;, the set of interior nodes.

Given an element R € 7, let hgr; be the length of the side of R in the direction x;.

We assume that there exists a constant o such that, for R, S € 7 neighboring elements,

hr.i ‘
(2.1) Blco  1<i<d
hs,i

For each v € N we define



hy; =min{hg; : v is a vertex of R}, 1<i<d.
and hy = (hy1,hy2) if d = 2 or hy = (hy1,hy2,hy3) if d = 3. If p,qg € R? we denote by p : ¢ the
vector (p1q1,p2q2) if d = 2 or (p1q1, p2qo, p3gs) if d = 3. Take ¢ € C°°(R?) with support in a ball
centered at the origin and radius » < 1/0 and such that [¢ =1, and for v € NV, let

- 1 Vi — X1 Vg — X2
w‘,(x) N hv71hv72w ( hv,l ’ hv 2 )

)

ifd=2or

1 Vi —X1 Vg —T9 V3 — I3
d)v(x) = s )

hv,lhv,th,B hv,l hv,2 hv,?)
if d = 3. Given a function u we call P(z,y) its Taylor polynomial of degree 1 at the point z, namely,

Pla,y) = u(x) + Vu(z) - (y — 2).

Then, for v € N, we introduce the regularized average

(2.2) w(w) = [ Plag)iy(a)ds

Now, given u € H}(Q2) we define ITu as the unique piecewise (with respect to 7) Q; function such
that, for v € Ny, Iu(v) = uy(v) while ITu(v) = 0 for boundary nodes v.
Introducing the standard basis functions A, associated with the nodes v we can write

Mu(z) = > uy(v)Ae(2).
vENn
For R € 7 and v € N we define (see Figure 1 for the 2d case)

R= U{S €7 : S is a neighboring element of R}

and
R, = U{S €7 :v is a vertex of S}.

In our analysis we will also make use of the regularized average of u, namely,

QWO=/M@%@M%
for v € N;,.

FIGURE 1
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We remark that, since r < 1/0, it follows from our assumption (2.1) that the support of 1, (x) is
contained in R,.

Now we prove some weighted estimates which will be useful for our error analysis. For any set D
we call dp(z) the distance of = to the boundary of D. For a d-rectangle R = IT1%_, (a;,b;) we have
dr(z) = min{z; — a;,b; — x; : 1 <i < d}. For such R we will also consider the following function

i—a; by —x; .
Or(z) = min{thj , hR,f 1< < d}.

We will make use of the following inequality which is known as “Hardy inequality”:

23 el

for v € HE(0,1). We will also need the following generalization to higher dimensions: If D is a convex
domain and u € H}(D) then

<O
L200) [Vl 2(0,1)

(2.4)

u
—_— <2|V
[ O P
(see for example [17]).
The following lemma gives an “anisotropic” version of (2.4). It can be proved by standard scaling

arguments.
Lemma 2.1. Let R =%, (a;, b;) be a d-rectangle and h; = b; — a;,1 <i < d. For allu € H}(R)
d

<2 hi
=2

ou
6$i

u

OR

(2.5)

L*(R) .

Another consequence of (2.4) is the inequality that we prove in the following lemma. This inequality
was proved for Lipschitz domains by Boas and Straube in [7]. We give a different proof here because
we are interested in the dependence of the constant on the domain, which is not stated in [7] because
the proof given there is based on compactness arguments.

Lemma 2.2. Let R be a d-rectangle with sides of lengths h;, 1 < i < d, such that % < h; <46, and
let ¢ € Cy(R) be a function such that wa = 1. Then, there exists a constant C' depending only on &
and 1, such that, for all w € H'(R) with [,u) =0,

(2.6) lullz2(ry < ClldrVullL2(R)-

Proof. Since v :=u — ([ )1 has vanishing mean value, there exists F € Hj(R)* such that

(2.7 —divF =v
and such that

(2.8) 1P sy < Cllollzecay-

Moreover, from the explicit bound for the constant given in [13] it follows that C' can be taken
depending only on 4.
Now, since [, ut) =0, we have from (2.7)

||uH2L2(R):/uv:—/udivF
R R

and therefore, integrating by parts and using (2.4) for each component of F, we obtain

< 2|[drVullL2(r) IVF| 12(R)

F
2

ul|52 = Vu-F < ||[dgVu H—H

[ullz, (R) /R ldr ||L2(R) drllL2(r)

but,



[0l Z2(ry < (U4 RN m) ull72(a)
and so, the proof concludes by using (2.8) and the fact that the constant in that estimate depends
only on 4. O

As a consequence of the previous lemma we obtain the following weighted estimates.

Lemma 2.3. For v € Nj, there exists a constant C depending only on o and v such that, for all

u e HY(R,),
¢ ou
(2.9) lu = Qu(u)llL2(r,) < Czhv,i el [
i=1 L2(Ry)
and, for all u € H*(R,),
O(u — uy) 0%u
(2.10) H <O hyil|ld V;;;;;f .
Oz L2(R.) Z Oz ;0x; L2(R.)
Proof. Let K, be the image of R, by the map z — = with
7 = Vh_x 1<i<d

and, for Z € K, define @ by @(%) = u(x). Then, Q,(u) = Q(%) where

Qa) = / (2 (@)dz.

Now, in view of our assumption (2.1), the d-rectangle K, satisfies the hypothesis of Lemma 2.2 with
0 = 20. Moreover, since r < =, the support of ¢ is contained in K. Therefore, since f Q(u))y =0,
it follows from Lemma 2.2 that there exists a constant C' depending only on ¢ and v buch that

1z — Q@) 2(x,) < Clldx, Vil L2,
and (2.9) follows by going back to the variable .
To prove (2.10), observe that u,(y) = t(y) where

w0(s) = [ (@) + V(@)(@) - (5 - 2)(o)dz

and so, since

/a(a i%)w o,

we obtain from Lemma 2.2 that there exists a constant C' depending only on ¢ and v such that

Ha(uuo) <OHde8u
0% ek, 0%l L2k,
and the proof concludes going back to the variable . O

We can now estimate the approximation error for interior elements in terms of weighted norms. We
start with the L? norm. From now on C will be a generic constant which depends only on ¢ and . In
view of our hypothesis (2.1), hy; and hg,; are equivalent up to a constant depending on ¢ whenever
v is a vertex of R. We will use this fact repeatedly without making it explicitly.

Theorem 2.4. There exists a constant C depending only on o and ¥ such that
(i) For all R € T and u € H'(R) we have

(2.11)

Mull 2 gy < Cllull 2 -
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(ii) for all R € T such that R is not a boundary element and v € H'(R) we have

d
ou

(2.12) [u — Tul| p2(gy < OZhRﬂ« 5%—% .

=1 L (R)
Proof. To prove (i) we write

ngr

(Hu)|R = Zuvj (Vj>)\vj
j=1

where {v;}]" are the interior nodes of R. Then,

d 2 nRr
(2.13) Ml 2 gy < C <H hR»l’) Z [ HLoc(R)

i=1

and we have to estimate ||uy, ||z~ r) for each j. To simplify notation we write v = v; (and so the
subindexes denote now the components of v). We have

1
2
<C (H th) [ull 2 g)-
=1

On the other hand, since 1, = 0 on dR, integration by parts gives

i — w)bu(@)de| = | [u@@)de - [ u@)(s - 00 22 (@)da
[ / / o

d -2
<C (H hR,z‘) lull g2 ()
=1

where we have used that |y; — z;| < Chy,;. Thus, (2.11) follows from (2.13), (2.14), (2.15) and the
definition of u, given in (2.2).

To prove (ii), choose a node of R, say vi. Since @y, (u) is a constant function and R is not a
boundary element, we have I1Qy, (u) = Qy, (v) on R and so

(2.14) ‘ / )by (2)da

-

(2.15)

lu = Tul[L2(r) < llu — Qv, (W)l L2(r) + TH(Qy, (w) — W)l L2(R)
< Cllu = Qu, (W)l 2(r)
where we have used (2.11). Now, estimate (2.12) follows from (2.16) and (2.9). O

(2.16)

In what follows, we estimate the approximation error for the first derivatives for interior elements.
We will use the notation of Figure 2.

Theorem 2.5. There exists a constant C' depending only on o and v such that, if R € T is not a
boundary element then, for all u € H?(R) we have

d
<C» hpry;

5- 8%u

0
—TII -
(u U) R 8$28$J

2.1 1< <d.
(2.17) [ <j<d

L2(R)
Proof. We will consider the case d = 3,7 = 1. Clearly, the other cases are analogous. We have
u—Tu = (u— ty,) + (ty, — u)

and from (2.10) we know that || M |2 (R) is bounded by the right hand side of (2.17). Therefore,

0 (uy; —Tlu) ||L2

we have to estimate || = . Since w := uy, — Iu € Q; we have (see for example [18])

ow . Oy,
pr Y (w(vi) = w(visa)) o,

i=1




FIGURE 2

then,
ow ! Oy,
(2.18) o R DI CA BT C ] .
Tl i 1l (r)
But, it is easy to see that
1
Oy, hy, 2hy, 3\ 2
(2.19) ‘ o <C <h2 3)
X1 L2(R) vi,l

So, we have to estimate |w(v;) — w(v;44)| for 1 <i < 4. We have

w(v1) — w(Vs) = Uy, (V5) — Uy, (V5)

(2:20) = [ Plavs)i@)is = [ Plavs)in, ()i,

So, changing variables we obtain

(2.21) w(vy) —w(vs) = / [P(vs — hyy 1 y,V5) — P(vi — hy, 1y, v5)]9(y)dy.

We introduce the notation v; = (v}, v?,v?). Define now

0 = (61,0,0) := (vi —vi + (huy;,1 — hwy,1)1,0,0)
and
F,(t) == P(v1 — hy, 1 y +t0,vs).
Then, since hy, 2 = hy, 2, hy, 3 = hyy 3 and vi = v2, vi = vi, we have

P(VS - hV5 1y7V5) _P(Vl _h’Vl :yﬂv5) = Fy(l) _Fy(o)

and replacing in (2.21) we obtain

wwn—wwa:/[f%@w@ﬂwzjf{/@www@}ﬁ

and therefore it is enough to estimate

Mw:/@mwww

for 0 <t < 1. But, from the definition of F, and P, we have
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[vi — V1 + hy, 191 — t04]

82
[Z(t)] S/{‘(?;QL(VI — hy, ty +t0)] x

1

0%u
+ m(m — hy, ty +t0)] x |v§ —vi 4 P, 292
0%u 5 .
+ 0z10x3 (Vi =Py, 2y +10)| X [v5 = Vi + Py 3y ¢[00 [0 (y)dy
Now, for |y| <1 and 0 < ¢ < 1, we have
|9| - |91| = Chvl’l ’ |V§) - V’i + thiyi - 91t| < Chv1,i7

and therefore, since supp(v)) C B(0,1), we have

It)<C/{’62u(v1—h :y—|—0t)‘(h 1)2—1—' Ou (vi—h :y+9t)’h 1hy, 2
- 0z? . v 0x1015 . YT
0%u
+ axlaxd (vl _th :y+0t)’hvl71hvl73}w(y)dy'

Now, making the change of variables z = vi — hy, : y + 6t and calling

(1 ol 1 ) Y3
() = (=2 (1= t)v) + tv3)] O T S G B 61
(1 —t)hy, 1 + thesa Iy, 2 by, 3

we obtain
3

. (91'1 8xi
=1

where we have used that hy, 1 > C((1 —1¢)hy, 1 +thy,,1). But, since supp ¢ C B (O7 %), it follows that
supp ¢ C R. Then, using the Schwarz inequality we obtain

1
I(t) < Cr—
()] < hoahes

<z>' o(2)dz

¢
7 g
| (t)| v172hv17 ; hvh Raxlazz ’ 5R
and from Lemma 2.1 we know that
‘ 2N < Oty ohor ).
L2(R)
Finally, using (2.19) we obtain
) > u
2.22 w(vy) —w(v hiS <C ho, i l|0p=—— .
222 i) i) || <03 o]
Now, to estimate |w(vy) —w(vg)| we write
w(v2) — w(ve) = (Uy, (v2) — Uy, (V2)) — (s, (V6) — tve(v6))
(2.23) = (v, (V2) = Uy, (V6)) — (Uvy (V2) — Uy, (V6)) — (Uvy (V6) — Uvg (Ve))
= I-II-1II.
Now we estimate I — I1. We have
1= [ 28 @) b v @da and 11 = [ 2 @)k — vl (a)da
oy O0x1

where we have used that vo — vg = (v} — v§,0,0). After a change of variables in both integrals we
obtain

0 0
roa= | [B;L(—h W)= 2w, :y)] (vh — v3)(y)dy



and so, defining 6 = (0, 02,0) := (0,v3 — v} — (hyy.2 — hy, 2)Y2,0) and
ou
Fy(t> = aixl(V]_ - hvl Ly + 9t>

and taking into account that hy, 1 = hy,,1 and hy, 3 = hy, 3 We have

I—IL=—/11%@X@—v@www@

=j[{/@m@—@www}ﬁ
— /01 I(t)dt.

Fl(t) = ﬂ( — hy, 1y + 60t)6
v a 61‘18332 Vi vy 2

Since

and for y € supp ¥, |y| < 1, we have

0u
101 < [ | 5o gt =t 0 Il = vl
2
< Chy, 1hy, —hy iy 0t dy.
< Ot [ |52 5o = oy sy-4.00) [0y

Change now to the variable z = vi — hy, : y + 6t and define
g —[(1—¢ 2 + 2 R
¢(z)¢(31 Vl’izZ [( Jvi + V2}’723 V1>
hV1,1 (1 - t)hv172 + thv2,2 hv1,3

Then, since supp ¢ C R (because supp ¥ C B (0, L )), we can use Lemma 2.1 to obtain

o

1 0%u
It <c d
10) < O3~ [ |30 621
2
e 1 - 0*u o(2)
hv1,3 81'18{,132 L2(R) 6R LQ(R)
oty s, #o
hv1,3 (95818562 LQ(R)
Therefore,
1
By, 1hy 2 2
I—II|<C(1’11’2) R& )
hvl,S 833‘16'732 LQ(R)

The term II] in equation (2.23) can be bounded by the same arguments used to obtain (2.22).
Therefore we obtain

d

<CD hyid

L2(R) a i=1

i 0%u
R Bxlé)xZ

e,
81'1

(2.24) w(va) = (o) |

L2(R)
The estimate of w(vs) — w(vy) follows by the same arguments used to estimate w(va) — w(vg).
Then, it remains to estimate w(vy) — w(vsg). We have
w(va) — w(vs) = (uy, (va) = v, (v4)) = (uy, (V) — tiyg(vs))
= [(uy, (va) = uy, (v8)) = (s (va) — vy (vs))]
[ty (74) = g (7)) = (2t (72) — 10, (7)) 1t (75) — 1, (05)]
=IT+II+1I1I.
Now we deal with the term I. One can check that

0 0
Iz/[&ierM:w—aZwaM:w<ﬁ—vbww@.



10 RICARDO G. DURAN AND ARIEL L. LOMBARDI

Defining now

ou

where 6 = (0,0, 603) := (0,0,v — vi — (hy, 3 — hyy.3)y3) we have

(V3 — hv3 Ly +t9)

3
I= / RAC RS

= [ [ e - vy = [ 1

Since
0%y
/ o _ . )
fy(t) = 81‘181’3 (V3 hv3 Yy + t9)93

and |03] < Chy, 3 if |y| <1 it follows that

0%u
6901 8I3

()] < oy 1l /

(va — by 1y + t@)‘ Y(y)dy

and so, changing variables and setting

21 —vy  2a—v3i 23— [(1—t)v3 + tvi]

Z = b) b b)
¢( ) w ( hvs,l hv:s,? (1 - t)hvs,3 + thV1,3 )

we obtain

0%u
—(z
6581 8933

>] o(2)dz.

1
<
<o [

Now, taking into account that ¢ = 0 on dR, it follows by the Schwarz inequality and Lemma 2.1 that

1 0%u ¢
It <c ; 55
[1(t)] < hoyo || 021023 || 12y [ 072 L2(R)
1
- (m) g i
- hv1,2 Raxlax?’ LQ(R)’
and therefore,
(2.25) d Hm <t ez
. 0xq L*(R) e 0,0z LQ(R)'

Finally, estimates for the terms IT and I1I can be obtained with the arguments used for (uy, (ve) —
Uy, (V6)) — (Uyy (V2) — Uy, (v6)) in (2.23) and uy, (vs) — uy, (v5) in (2.20) respectively. These estimates
together with the inequalities (2.22),(2.24) and (2.25) conclude the proof. O

3. ERROR ESTIMATES FOR BOUNDARY ELEMENTS

In this section we deal with the interpolation error on boundary elements for functions satisfying a
homogeneous Dirichlet condition. For the sake of simplicity and because the proof is rather technical,
we state and prove the main Theorem in the two dimensional case. However, analogous results can
be obtained in three dimensions by using similar arguments.

We will use the notation of the previous section. Further, if R = (a1,b1) X (a2,b2) is a rectangle in
T, we set Ry; = a; and lg; = (a;,b;). Also we define the function d_ g by

. T1— a1 T2 —az
0_ r(z) = min , .
hra hr2

We have dg(x) < d_ r(x) for all z € R.
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To estimate the error on a boundary element R we need to consider different cases according to
the position of R. So, we decompose € into four regions (see Figure 3):

O =|J{ReT:RNOQ=

0}

Q=J{ReT:Rn{z:21 =0} =0 and RN {z: 2y =0} # 0}

93:U{R€T:Rﬂ{x:x1:O}#@andRﬂ{x:xQ:O}:@}
Q4 = R € T such that (0,0) € R.

Theorem 3.1. There exists a constant C' depending only on o and v such that if R € T for all

u € H?(R) the following estimates hold,
(i) If RC Qe and u=0 on {z: 25 =0}

2 _ 7 2
(31) 9 (u — Hu) <C hR,l ‘5_ Rai’l; + hpo 1 — R O0%u
011 L2(R) " O0xy L2(R) hri 0Ox10z L
and
_ R 2 9
(3.2) ‘ 0 (u—TIu) <C{ hpa 1 — Ry 97w sl Raiz |
8x2 L2(R) hR71 8%18.%2 L2(}:'i) , 8332 Lz(R)
(i) If RC Q3 andu =0 on {z: 1 =0}
2 _ 7 2
(33) 9 (u — Hu) <C hR,l ‘5_ Rai’(; + hpo 29 — Ria O0%u
011 L2(R) ’ 83?1 L2(R) hR’Q 0x10x9 L2(R)
and
_ R 2 9
(3.4) ‘ 0 (u—TIu) <C{ hpa r2 — Rz 07w thmals Raiz |
aIQ L2(R) hR72 8%18.%2 LQ(R) ) 81’2 Lz(R)
1 C andu=0on{x:xy=0 orxzs =
(i) 1 R € andu=0on {z 21 =0 or ey = 0}
(3.5) Ha(u—Hu) <Clhpills _O%u Th { T T2 } 9%u
. Oz L) R, — B g2 L2(R) R,2 hri  hra) Ox10x: L2(R)

(@)

©

(b)

(d)

FIGURE 3. Relative positions of the rectangle R. The bold face line is the boundary of Q.
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and
0%y

5_7}%87];%

+hr1

(3.6) H (u — TTu)
L2(R)

L2(f%)} .

From (2.10) we know that || a%l(uf Uy, )||L2(r) is bounded by the right hand side of (3.1). So, to prove
(3.1), it is enough to estimate ||a%(uv3 —TIu) || 12(r)
Since (uy, — ITu)|r € Q1 we have (see for example [18])

T n To 0%u
hR,l ]’LR72 6%‘181‘2
Proof of Part (i). We now use the notation of Figure 3(b). We have
Hujr = Uy, (V3) Avy + Uy, (V4) Ay,

<C {hR,2

L*(R)

P A,
iy = T10) = (1, — ) (%) — t, = ) (72)) 5
(1) (g = T0)(34) = (i, = T)(v3)) 2
) A,

= (1t (v2) =t (02)) 2 o o (v2) = (02)) 52

Taking into account that 8“1 =0 on (z1,0) it is easy to see that

)~ == [ [ I e e

and then,
u
vy (72) — 2y (91)] < Chyy 1 / / ~ / o (1,)| e ()i d
— Ry 92 Dy
< Chyy n_dgu oy () — 2L das.
la o hv311 8-%181’2 Lz(R) 7R11 Lz(fg)

Using the one dimensional Hardy inequality (2.3) we have

2 2
/ (%’) d(ﬂ § . C2 / 31/1 (V3 —iCl’ V% {E2>‘ d;Ul
lp, 121 — Ri hysahuso Jig, 021\ Tyyn | By

<C L
and then it follows that

(3.8)

— 3 2
V3,1 V3,2

- Rll 82u
hv371 81‘181}2

N

|uV3 (V2) = Uvg (V1)| < C(hV3,1hV3,2)

L2(R)
and so

- Rll 82u
hvS,l (9.%‘18,@2

A\,

<Ch
8(E1 ¢

L2(R)

V3,2

(39) iy (52) = (o0 |

L2(R)

0%u
R@xiﬁxj

) = s )| 52

On the other hand, with the same argument that we have used to obtain (2.22) in the proof of
<C Z vasi
L*(R)

Theorem 2.5 we can show that
L2(R)>
which together with (3.7) and (3.9) concludes the proof of (3.1).
Now, to prove (3.2), using again Lemma 2.3, we have to estimate Ha%z(uw — Hu)||2(ry. Using
again the expression for the derivative of a @1 function we have
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3 a)\vs a)‘V4 a>\V4
T@(uve H’LL) = TUyg (Vl) 0o + (uvs (V4) Uvy (V4)) O Uy (VQ) O
8)\\; a)\V4
(1) 58 (1 (93) — 1 (92)) P2
(3.10) 2 2
(10, () = 1, (02)) 2, () N
Uy, (V4 Uy, \V2 3&02 Uy, (V2 81'2
8AV3 8)\v4 8AV4
Uys (V1) Dy +(I-1I) i — Uy, (V2) Oy

Defining now

0 = (61,0) := (vi = v3 = (hvs1 = huy 1)1, 0)

and
ou
Fy(t) = 87332(‘,3 — th Ly + Gt)
we have
9 ou
I—IT=i—v3) [ |5—(vs =l 1Y) — =—(va— hy, 2 y) | Y(y)dy
Jxa 0
— (v} -} / (F,(0) — Fy (1)) (y)dy
= —(v; — v2 // F’ (t)dty(y
but,
0%u
/ .
Fy( ) (927181’2( hV3 y+9t)01
and so,
I—1II=—(v2—v3 / /&max2 — hyy 1y + 08)019(y)dydt

= —(v; — v2)/O I(t)dt.

We will estimate I(t). Since supp ¢ C B(0,1) we have

0%u
< — : .
01 < Ot [ |5 tva =t 400wl

Now, setting z = vg — hy, : y + 6t, taking into account that Chy, 1 < (1 — t)hy, 1 + thy, 1(0 <t < 1),
and defining

() = (1 —t)vi+tvi—2z1 v3— 2
(1 =t)hyy1 +the, 1" Dy,

we obtain

0%u
8x18x2

@) < C hv; / z)‘ 6(2)d=

and, since ¢ =0 on OR we can use Lemma 2.1 to obtain
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1 0?
I e N e
hog2 || 07 L2(R) dx10x2 L2(R)
1 0 0 H?
<C hr1 e + hR,2 ¢ H(SRU
hV3,2 321 L2(R) 32’2 L2(R) O0x10x4 L2(R)
3 2
o) b, s
hR72 (95818932 Lz(R)
Therefore,
9%u
I—T1I| < C(hgpihps)? ||0p———— ,
| |7 ( Rl R’2)2 H Raxlal'g L2(R)
o)
O, 0%u
3.11 I—1II < Ch 0p——"— .
(310 H( o ‘9332 w00 || e gy

Now, to estimate the first term of formula (3.10), ., (v1) %/\

then one can check that

we observe that, since u(z1,0) =0

y, (v //1262 (0, )t — v2) 0 ()dtdm—i—/( = o) Y, (2)de
(312) V3 1 o P} 2 la 1)%vs 1 ax V3
=: A+ B.
We will estimate A and B. Since v? = 0 we have
Ry t |0%u h
|A| < Ch,, 2// nom T (w1, 8) | by () —22—dtda
=0 hvg,1 hwg2 |03 1 — Rn
82 Iy
<C’hv32/ / / Azt Z(zl, )‘¢V3(:c)°“1dtdx1dx2.
ox Ty — fal
Therefore, using the Schwarz 1nequahty and (3.8) we obtain
hys2)? RZ
VIEYEIUElLN (Pl
(hws )2 | 77023 |2y
and then,
O 0?
(3.13) |A] H s < Chyys ||0_ o .
93 || 12(r) x5 || o)
In order to estimate B we note that, since ,9871(9517 0) = 0 then,
ou
B[ oo [ g, (e
lﬁ 1 lR 2 1

L

e / =0 3I23x1 o (21, )y, (¥)didazdzy.

Then,
|B| § Chv ,1/ / / (xl,t)‘ ’L/)V (l’)dtdl‘ldiﬂg
’ lf?,,2 lﬁx’,,l lﬁ.,z 83316%‘2 ’
1 - Rn 0*u
< Clhyg 1l 2)
3 3 hV3,1 0x10x2 L2(R)
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where we have used the Schwarz inequality and the same argument used to obtain (3.9). Consequently
we obtain

O — Ry 0
|B] H : < Chuy n_2
81'2 L2(R) hv371 8%18%2 L2(R)
which together with (3.12) and (3.13) implies
Oy 0*u — Ry 0%u
Uy. (Vl) 2 S C hv ,2 6_ RA o + hv 1
T 0 e TR0 ey || e Om0an ], o

Clearly an analogous estimate follows for |uy,(v2)

%/\zv; |L2(r), and then, in view of (3.10) and (3.11)
we conclude the proof of inequality (3.2).
The proof of Part (ii) is, of course, analogous to that of Part (i).

Proof of Part (iii): We will use the notation of the Figure 3(d). Then

HulR = Uyy (V4))‘V4
In this case the error can be split as
(u—Hu) g = (u— ty,) + (uy, —u)
and it is enough to bound wuy, — ITu, which is piecewise Q;. Then we have

oty — ) = ((t, — Tu)(v3) — o, — T (v3)
1

81'1
O,
(3.14) + (g = Tu)(v2) = (uy, —Tlu)(v1)) 5=
6)\\,4 aAVz

= _Uv4(v3)67x1 + (uV4 (VQ) = Uy, (Vl)) ory

First we estimate |uy, (v2) — ty, (v1)]. Using that %(wl, 0) =0 we have

tigy (v2) — iy (1) = / (P(2,v2) — P2, 71))bs (2)de
— - [ 5 a“( Yoy (z)d

= (vs —vi] / - (%claxg (21,1)1y, (z)dtdz.

It follows that

<
o) o) < Choa [ [ [ |0
o] [ [
lgodlgeYin, hv4’1

and an argument similar to that used to obtain (3.9) gives

(21, t)‘ Yy, (x)dtdx dzs

hv 1
T )] L Gy dtdes,
0100 ) 2 s

x1  O%u

ity (v2) =ty (v1)] < C by 1huy2) 2

hv4’1 8$18$2 LQ(R) '

Therefore,

z1  O%u

< Chy —_—
- 4,2 hv4’1 0x10x2

(3.15 o (52) = ()] | 2

Ly
Now we consider the other term in (3.14). We have to estimate |uy,(vs)|. Using that «(0,z2) =0
and vz = (0,v3) we obtain
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wnto) == [ [ Sty oyt + [~ an) S i (o)
— A+ B

and we have to estimate A and B. We have
0%y

Al < hy t
| | ol //tO V4,1hV42 a ( :EZ)

2
S Chv4,1/ / / (57 R(t,xz) @
l}%,l li%,fz lé,l l’ 1

Ox?

v v, 2 dtdz
oy () 22

2
hV4 2
(tv 332) wv4 (-%’)T’dtdxgdxl,
2

But again, by an argument similar to that used in the proof of (3.9), we obtain

3

hy,1)2 0?
s et
(hos2)2 I~ 021 ]| L2

Therefore,

0Ny 0?
(3.16) |A| H s < Chyyy |0 g5 .

91 || 2(r) x| Lo
On the other hand, using now that 3 (0 x2) =0, we have

B = [ - a2) 5 (@), (o)
T1 aQu
— —F v dtdxad
/ / 2) - B0, (b 2) e (2)didmaday
and then
|B| < Ch / / / O (t, 22) by, (a )h“”dtdx dz
V4, 2 V 9 ax16$2 2 Va 2 1-
R 1 45
Hence
OAy 9?
(3.17) B H s < Chyy o |22 220 .
0z L2(R) V423$13£U2 L2(R)
Now, inequality (3.5) follows from (3.14), (3.15), (3.16) and (3.17).
Since (3.6) is analogous to (3.5) the proof is concluded. O

4. APPLICATION TO A REACTION-DIFFUSION PROBLEM

As an example of application of our results we consider in this section the singular perturbation
model problem

—e?Au+u=f in (0,2) x (0,2)

(4.1) u=0 on 8{(0,2) x (0,2)}.

Compatibility conditions are assumed in order to have the regularity results proved in [15] and
[16]. As we will show, appropriate graded anisotropic meshes can be defined in order to obtain almost
optimal order error estimates in the energy norm valid uniformly in the parameter €. These estimates
follow from our results of Sections 2 and 3.

The meshes that we construct are very different from the Shishkin type meshes that have been
used in other papers for this problem (see for example [2, 16]). In particular, our almost optimal error
estimate in the energy norm is obtained with meshes independent of e.
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Given a partition 7j, of (0,2) x (0,2) into rectangles, we call uj, the Q; finite element approximation
of the solution of problem (4.1). Since uy, is the orthogonal projection in the scalar product associated
with the energy norm

N

loll = {21V oll3z o 22 + 1012020 }
we know that, for any vy, in the finite element space,

[ = unlle < flu—vnlle.

In particular, if IT is the average interpolation operator associated with the partition 7} introduced
in Section 2, we have

(4.2) [ — unlle < fJu—Tuf.

Therefore, we will construct the meshes in order to have a good estimate for the right hand side of
(4.2).

We will obtain our estimates in = (0,1) x (0,1). Clearly, analogous arguments can be applied
for the rest of the domain. The constant C' will be always independent of ¢.

In order to bound the part of the error which contains the first derivatives we will make use of the
estimates obtained in the previous sections together with the fact that the solution of (4.1) satisfies
some weighted a priori estimates which are valid uniformly in the parameter e. We state these a priori
estimates in the next two lemmas but postpone the proofs until the end of the section.

Lemma 4.1. There exists a constant C' such that if o > % then

o Ou

 rop—
183?1

o Ou

<C.
L2((0,3)%(0,3))

<C and ‘x

L2((0,8)x(0,3))

Lemma 4.2. There exists a constant C' such that if o > % then

i o?
(4.4) e||z$ 5 <c, e|[25 75 <c,
01 || L2((0,5)x (0.3)) 023 |l L2((0,3)%(0.8))
B 8°
(4.5) € :C‘fiu <C and € xﬁjiu <C.
021972 | 12((0,3) (0.9 021022l 12((0,4)x(0.9))

To estimate the error in the L? norm we will use a priori estimates in the following norms. For
v: R — R, where R is the rectangle R =1 X Iy, define

(46 Mollowxsr = 0@z, and  [[ollixoe,r = |00, 22)l

L (1) L(la)

Then we have the following lemma, which also will be proved at the end of the section.

Lemma 4.3. There exists a constant C' such that

ou

_— <C.
61‘2 -

00x1,(0,5)%(0,3)

B
8I1

<C and H

1x00,(0,3)%(0,3)

Let us now define the graded meshes. Given a parameter A > 0 and « € (0,1) we introduce the
partition {&;}1¥, of the interval [0, 1] given by & = 0, & = hﬁ, Cip1 =& +nhE fori=2,--- | N—-2,
where N is such that {ny—; < 1and {nv—1 +hER_; > 1, and {x = 1. We assume that the last interval
(én—1,1) is not too small in comparison with the previous one (§y_2,&n—1) (if this is not the case we
just eliminate the node &y _1).

We define the partitions 7, o, such that they are symmetric with respect to the lines z; = 1 and
29 = 1 and in the subdomain = (0,1) x (0,1) are given by

{R cQ:R= (&;1,&) X (gjfl,fj) for1 < 1,7 < N}
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Observe that the family of meshes 7}, ., satisfies our local regularity condition (2.1) with o = 2,
that is, if S, T € 7}, o are neighboring elements then

hTz < 90
hSz

For these meshes we have the following error estimates. We set Q = U{R : R C Q} where we are
using the notations of the previous sections.

Theorem 4.4. If u € H*(Q) and u = 0 on {x : 1 = 0 or xy = 0} then there exists a constant C
such that

0 0
lu — TTul| 20y < Ch 4 |2 — + ‘ ga 20
021 12 022|123y
(4.7
1
+ Ch?2a — ,
{‘ 6$2 ooXlQ H&m 1><OOQ}
O(u—1I 02 02
(4.8) Ou — u) <ch | |2055 + (2% + 2g) :
61:1 L2(Q) (9$1 L2 (Q) axlaxQ LQ(Q)
and
O(u — 11 0? 0?
(4.9) Ou — Iu) < Ch | |[(zf + a:g)iu + ’ xg‘—g )
31'2 L2(Q) 8x18x2 LQ(Q) 8%2 LQ(Q)
Proof. We will estimate the error on each element according to its position. So, we decompose the
domain 2 into four parts, €;, ¢ = 1,...,4 defined as
Q= [&, &) Qo = [€1,¢N] x [0,&1]
Q3 =[0,&] x [&,¢n] Q4 = 10,617
and we set Qi:U{E:RCQi}J: 1,...,4.
In order to prove (4.7) we split the error as follows
4
(4.10) lu— |32y = > llu—Tul32q,) = 1+ Sz + S5 + Sa.

i=1

First we estimate S;. If RN {z : 1 =0 or z2 = 0} = () we have that, for each S C R, hsi1 < ha$ and
hso < hzg for all (x1,2z2) € S and then, Theorem 2.4 gives

2 2
lu— T2 gy < C { 12 / LN RS / Sul” g
L%2(R) = R,1 P (9931 R,2 B 8$2
Bu 9 ou |?
<CZ{h — dx+hs,2/sa—x2 dx}
2 ou |2
< h2 200 | Y d h2/ 200 | Y d
_CZ{ /le o T + SIQ Dg T
ScS
2 2 2 2 20 | OU ?

Now, suppose that R C Q; , RN {z :29 =0} # 0 and RN {z:27 =0} =0. Then Ris = 0 and,
if S C R, we have hg; < ha{ for (z1,22) € S and hga < ChTs. Therefore, using Theorem 2.4 we
obtain



19

ou
— TTu||% 2,5y <Ch? /525* _— _—
||U uHL (R) = R,1 P R (x) axl 81'2

<cS {hgl/ ‘8‘9“‘ de + ChZ, 2a/z§a au
‘ s 10T S
SCR

2
dz + Ch /~ (512;(.27)
R

2 2
ou
<C hz/ — dm—f—C’hQ/xz"‘ —| dx
S%;l{ xl o i ax2
2 ou 12
_ 2 2a 2 2a
_C{h /le B dx+h /sz 92 d:c}.

Now, if 0 € R, that is Rﬂ{x caxp =0} # 0 and Rﬂ{x i xo = 0} # 0, then, Ry = Rip = 0 and
hra < Chﬁ,hR,Q < ChTs. Then, from Theorem 2.4 we have

ou |2
2 2 2a 2a
Ju — TTul[72(g) SChRJ/RéR (m)’axl dx + Ch% /6 78;52
2 ou
< 2—2« 2 22« 2c
_C'hR1 /Rarl 78x1 dﬂc—l—C’hR2 /ﬁg% 73%2 dx

o

65(}2

6371

2 2
<C{n? / z3e dz + h? / 2 dr % .
R R

A similar estimate can be obtained for |Ju — ITul|2(g) when RN{z:z; =0} #0and RN {z:xy =
0} = 0. Therefore, we have

2 2
ou
S; <C Z {h2/~x%”‘ — dx+h2/x§a — dm}
(4.11) Aco, U JR 10T i 23“
ou
<Ch? | g2 |2 d h2/ dz.
=¢ é(ﬂ 0x1 T+C Q 2 8$2 v

Now, we estimate S;. From Theorem 2.4 we know that |[IIul|r2(r) < Cllul| 2z, for all R € T, and
therefore

(4.12) Sy = Z ||U—HU||2L2(R) <C Z ||“||2Lz(é) < C||u||i2@2)-

RCS2 RCQ>

So, we have to estimate [|ul|;2(q,)- We have Qp = lg, 1 X lg, o With [lg 1| < C and [lg, ,| < Chi=s
Using that u(x1,0) = 0 we have

el q,, = / /
n22
i) a 2
/ / { au (3?1, )dt} dl‘gda)’l
921 922 0 L2

(4.13) 2
SO/ gi(xl, ) dxg
1&32,2 L2 Ll(lQZ,Q) L>(lg. 1)
2,1
2
<ChT= Ou
T2 ooxl,ﬁrz
and so, it follows from (4.12) and (4.13) that
1 || 0
(4.14) S, < Che || 2L
axQ OOXl,QQ
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Analogously we can prove that

ou

T

(4.15) Sy < ChT=

)
1x00,Q3

ou

€2

Ou
81‘1

(4.16) Sy < Chia and S, < ChTa

cox 1,8 1x00,{

and inserting inequalities (4.11), (4.14), (4.15) and (4.16) in (4.10) we obtain (4.7) (note that Q4 C Qy
and Q4 C Q3)

Let us now prove (4.8). Inequality (4.9) follows in a similar way. Again we use the decomposition
of © into the four subsets 2;,7 =1,...,4 defined above. Then we have

2

4
(4.17) ’ 0 (u—Hu) Z u—Hu) =514+ 5+ 55+ 5
axl 2(Q) i=1 L2(9;)
and we have to estimate S;, i =1,...,4.
For Sy, Theorem 2.5 gives
9 2
Sp = Z —(u — TTu)
RC axl L2(R)
0%u 2 0%u 2
<Y dn /5%(1;)‘(95) da 1y [ 53 )| du
R%l { Bl Js R Ox? R2 J2 R 0x10x2
=: Z IR.
RCQ

Now, if RN {x: 2 =0 or 25 = 0} = () we have

8u

|Ig| <CZ {h

but, for T' C Q4, we have that

(418) hT$1 < Chx‘f s hT’Q < C’hacg V(xhl'g) S T,

2
|Ir| < C h2/x§a d +h2/ 3 dz p .
R R

On the other hand, if RN {x: x5 =0} # @ and RN {x : 2, = 0} = (), there are some elements T' C R
that not verify condition (4.18). For a such elements 7" we have hp o < hT=& while the condition on
hr 1 in (4.18) remains valid. So we obtain

and therefore,

2

0x?

0%u
33318332

2
IRl <C ) h2/ caly dx+h2*2a/m2a O
o T 1 8 T2 T 2 81:18332
C
9*u 0?u

8.%‘1 81‘2

2
<C’Z{h2/ da:+h2/ z3e dx}.
T T

Now, if (0,0) € R we have hr1 < Ch™= and hra < ChT= for all T € R and therefore,
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2 2
el <C S S h2 2“/ 2o O%u dx+h2*2a/x§“ Ou_|” 4
ik T Ox? T2 | 0x10x2
92u|? 02y |2
<C h? dx + h? / 20 dx b .
7%2{ /T 2 Oxt o T$2 01075 | "

If RN{x:x; =0} #0and RN {z: 2o =0} = ) we can estimate I analogously and so we obtain

2 2 2 |® 2 2 Pu_|*
4.1 <C<h YN=—| d h * dx » .
(4.19) S < /Qxl P -+ /sz 9200, |
Let us now estimate So. From Theorem 3.1(i) we have
~ 2c
9%ul® ~R o*u |’
So< S0 {hh, / 624 (x) ’82 dm+hf%72/~ (”“h “) |
(4.20) RE R i R\ R ot
= Z IR.

REQ,
Now, if R C Qy is such that RN {x : 2; = 0} = ) then, we have

Il <C{ > h% /8“ dx+Zh / i

Rl = ek 61‘181‘2

c

but, in this case, for T C R,

hT,Q < ChT)l < Ch.%‘(ll Vo = (1‘1,1’2) eT

and therefore,

2 2
(4.21) TR gc{;ﬁ[ﬁa d:c+h2/ zie dm}.
R R

On the other hand, if R C Q is such that RN {z : z; = 0} # 0, Ry, = 0 and so, it follows from (4.20)
that (note that hgo < hg1)

2

u 0%u
2
0xy

81‘183’;2

2
9%u

axlaxg

2
Ox]

el <03 mipe [ ate

TCR

dx+zh22a/ %OL
T

but in this case, for T' C R, hra < ChT% and then
0%u

d h2 2a
T /R 1 8.1‘18332

(4.2 ) (4.20) we obtain
2 d N h2/ x?o‘ o%u
Q2

2
dx p .
ﬁxlaxg .T}
Let us now estimate S3. Using Theorem 3.1(ii) we have

~ 2a
(92U 2 To — R12 82u

S3 < C h2 /52“—x — | dx+ h? / ‘
- R§3 ) () ox? B2 5\ hee 0x10x2

= Z Ig.

ReQ3

2 2
0%u

Ox?
nd

(4.22) IR <h2/R 3

Therefore, inserting inequalities (4.21) a

o | 97U
(4.23) S, < C{h2 /Q 77 o7

2
dx




22 RICARDO G. DURAN AND ARIEL L. LOMBARDI
If R C Qs is such that RN {z : 2o = 0} = @ then, for T C R,
hry <ChTs  hpo < Cha§ (i, 29) €T,

and so
0%u u |2
I < 2— 2a/ 2c0 | 2
Rl CTZR{h 1 ox? do+ s 0x10x2 d
4.24 <
| | <Z h2/ % dm+h2/m2a Ou 2dm
TR T 1 6 T 2 3%161‘2 '
C

If RN{x: 2y =0} # () then Rz = 0 and so (4.24) can be obtained also for this case using similar

arguments. Therefore, we have
2 2
dx + h? / 3 dr p.
Qs

Finally, to estimate Sy, note that 24 contains only one element R. Now, using Theorem 3.1(iii)
0%u? 02 02
(4.26) Sy < CR? {‘ gol o JU o JU

2
! 671‘% ! 33318:1?2 2 31318562 LQ(R)} '
Collecting the inequalities (4.19), (4.23), (4.25) and (4.26) we obtain (4.8) concluding the proof. [

0%u
4.25 Sy < C L h? 20|
( ) s = { /{zgxl 0z?

0%u
awlaxg

and the fact that for this element hr1 = hro = hT=% we obtain

2

+‘x

+’x

L2(R) L2(R)

As a consequence of Theorem 4.4 and the a priori estimates for the solution of problem (4.1) we
obtain the following error estimates for the finite element approximations obtained using the family
of meshes 7}, . To simplify notation we omit the subscript « in the approximate solution.

Corollary 4.5. Let u be the solution of (4.1) and uy its Q1 finite element approximation obtained
using the mesh Tp, o with % <a<1. IfN is the number of nodes of Tp, o then, there exists a constant
C independent of € and N such that

1 1
1—a+/N
Proof. From (4.2), Lemmas 4.1, 4.2 and 4.3, and Theorem 4.4 (and its extension to the rest of
(0,2) x (0,2)) it follows that if h is small enough (h < 3 is sufficient) and o > 3, then

(4.27) lu—uplle < C log N.

llu — uplle < Ch.
So we have to estimate A in terms of N. If we denote with M the number of nodes in each direction
in the subdomain €, we have N ~ M? and we will estimate M. Let f(¢) = & + h&®. Then, & = 0,
& = hT== and &it1 = f(&),i=1,..., My —1 where M;(= M) is the first number ¢ such that & > 1.
Since a < 1 we have that

f(&) > &+ hE = g(8), V¢ € (0,1).
Now, consider the sequence {m}f\i‘{) given by n1 = &, and ;41 = g(m:),? = 2,... M, where M, is
defined analogously to M. Then, it is easy to see that M; < M, and therefore, it is enough to
estimate M. But, M, = [m] where m solves (14 h)™ 1& = 1. Since & = hﬁ, for 0 < h <1, we
obtain

(4.28) !

1-ah
Now, from inequalities (4.28) we easily arrive at

1

1 1
logh<m—1<07710gh.

h

1 1
<(———
h<Cr——qrlogM

for all h small enough. O
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The Lemmas 4.1, 4.2 and 4.3 are straightforward consequences of the following estimates

ok .
(429) ’a k(l‘l,xg) < C{1+8_ke_Tl +E_ke—2 = 1}

ak x —x
(430) ’8 k(arl,xg) < C{l —|—g_ke_72 —|—5—ke_272}

provided that 0 < k < 4 and (z1,22) € [0,2] x [0, 2], which are proved in [16]. As an example we prove
the first inequality in (4.5). Observe that, for r = 0,1,2, 2 31; “(x1,22) =0 when x5 = 0 or x5 = 2 for
i =1 and when 1 =0 or 1 = 2 for i = 2. Then we have

3
/ / d.’Eld.’IJQ = / / 1 au ﬂdfbgd.’lil

ory Ox1023

3 29 [ ,,0u)\ d%u
— [ = (a2 C dry yd
z1=0 /0 8.771 < o axl > ax% i 2

0%u

8$185€2

/2 00 Ou D%u
0 Oz 03

[N

(4.31) 32a [20u 3 9% du 9%u
= [ 2GS ek [ / T s
o
/ / 1 a Za Zdl‘ldl‘g
— T4 1T+ 11.

Now, since

ou 3
2 (Z <
‘ 8331 (2’x2) =C
0%u 3
‘%(2,.%2) SC(1+5_2)
Ju _q =
aixl(l‘l,fﬂg) SC(1+€ e = ) (O§x1 S3/2)
62u _9 _T1
axQ(JZl,IEQ) SC(1+€ e ¢ ) (0§x1§3/2)
1
0%u
ax% (171,502) S C(1+€72)
we easily obtain
(4.32) 1] <C(l1+¢e7?)
(4.33) [II| < C(e72+¢e%273)
(4.34) [III| < C(e72%2+¢e2273).

Now, using inequalities (4.32), (4.33) and (4.34) in (4.31) we conclude the proof.
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