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Abstract. The classical error analysis for the Raviart-Thomas interpolation on
triangular elements requires the so-called regularity of the elements, or equivalently,
the minimum angle condition.

However, in the lowest order case, optimal order error estimates have been
obtained in [1] replacing the regularity hypothesis by the maximum angle condition,
which was known to be sufficient to prove estimates for the standard Lagrange
interpolation.

In this paper we prove error estimates on triangular elements for the Raviart-
Thomas interpolation of any order under the maximum angle condition. Also,
we show how our arguments can be extended to the three dimensional case to
obtain error estimates for tetrahedral elements under the regular vertex property
introduced in [1].
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1 Introduction

The classical error analysis for finite element approximations is based on the so-
called regularity assumption on the elements. In other words, the constants in the
error estimates obtained depend on the ratio between outer and inner diameter of
the elements and blow up when this ratio goes to infinity (see for example [4, 5]).

However, it is well known that the regularity assumption can be relaxed for
standard finite element approximations. For example, in the 2d case, optimal order
error estimates have been proved for triangular elements under the weaker maxi-
mum angle condition (i.e. angles bounded away from π). This condition allows the
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use of the so-called anisotropic elements which is of interest in several applications,
for example in problems with boundary or interior layers.

Error estimates under the maximum angle condition were first obtained in
[3, 9]). After these pioneering works many papers have considered different gener-
alizations of their results (see for example [2] and its references).

The usual error analysis for mixed finite element methods also makes use of
the regularity assumption [12, 14]. In view of the results for the standard method
mentioned above, it is a natural question whether the regularity hypothesis on the
elements can be relaxed in this case also. A positive answer for the Raviart-Thomas
space of lowest order RT 0 is given in [1], where an optimal error estimate is proved
under the maximum angle condition. However, it is not straightforward to extend
the arguments given in that paper to higher order approximations. In [7] it is
proved that the maximum angle condition is also sufficient to obtain optimal error
estimates for the Raviart-Thomas space RT 1.

The goal of this paper is to prove that the maximum angle condition is also
sufficient to obtain optimal error estimates for the approximation using the Raviart-
Thomas space RT k for arbitrary k.

The 3d case presents some important differences with the 2d case. Results for
the standard finite element approximations in 3d were obtained in several papers
(see for example [2, 6, 8, 10, 13]). In [10] Kŕızek proved optimal order error estimates
for the Lagrange interpolation on a tetrahedron K for smooth functions, namely
u ∈ W 2,∞, provided the angles between faces and the angles in the faces are
bounded away from π.

The Kŕızek condition seems to be a natural extension of the 2d maximum angle
condition. However, there is another possible extension: the regular vertex property
introduced in [1]. Roughly speaking, a family of tetrahedral elements satisfies this
condition if for each element there is at least one vertex such that the unit vectors in
the direction of the edges sharing that vertex are “uniformly” linearly independent,
in the sense that the volume determined by them is uniformly bounded away from
zero.

It is easy to see that in the 2d case the maximum angle condition and the
regular vertex property are equivalent. However, in 3d this is not the case. Indeed,
the Kŕızek condition allows for more general elements. To understand better these
two possible extensions of the maximum angle condition consider the two families
of elements given in Figure 1, where h1, h2 and h3 are arbitrary positive numbers.

It is easy to see that both families satisfy the maximum angle condition, but the
second family does not satisfy the regular vertex property. Moreover, it was proved
in [1] that the family of all elements satisfying the Kŕızek condition with a constant
ψ < π (i.e., angles between faces and angles in the faces less than or equal to ψ)
can be obtained transforming both families in the figure by affine transformations
with bounded condition number. On the other hand, the family of all elements
satisfying the regular vertex property with a given constant (see Section 3 for the
formal definition of this condition) is obtained by transforming in the same way
only the first family in the figure.
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Figure 1

In [1], optimal error estimates under the Kŕızek condition were obtained for the
RT 0 spaces in 3d. In this paper we prove optimal error estimates for the general
RT k spaces under the regular vertex property. The more general case of elements
satisfying the Kŕızek condition requires a different argument and will be the subject
of future research.

To simplify the exposition we present first the proofs in the 2d case in Section
2. Then, in Section 3 we show how the arguments can be easily generalized to the
3d case for elements satisfying the regular vertex property.

2 Error estimates in the two-dimensional case

We use the standard notation Pk for the space of polynomials of degree less than
or equal to k. Then the local Raviart-Thomas space of order k ≥ 0 on a triangle T
[12] is defined by

RT k(T ) = P2
k(T ) + (x, y)Pk(T ). (2.1)

It is known that there exists an operator

Πk : H1(T )2 −→ RT k(T )

such that ∫

`

Πkv · npk =
∫

`

v · npk ∀pk ∈ Pk(`) ∀` side of T (2.2)

and, if k ≥ 1,
∫

T

Πkv · pk−1 =
∫

T

v · pk−1 ∀pk−1 ∈ P2
k−1(T ) (2.3)

Introducing the L2 orthogonal projection

Pk : L2(T ) −→ Pk(T )
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it is not difficult to check that Πk and Pk satisfy the following commutative diagram:

H1(T )2 div−→ L2(T )
Πk

y
yPk

RT k(T ) div−→ Pk(T ) −→ 0

(2.4)

where the right bottom arrow in this diagram indicates that the divergence operator
is surjective.

In the rest of the paper the letter C will denote a generic constant independent
of the element T and of the functions involved in the estimates.

The error estimates for Πk will be a consequence of the generalized Poincaré
inequality given in the next lemma.

Lemma 2.1 Let T be a triangle and ξ1 and ξ2 unit vectors in the directions of
two sides of T that have lengths h1 and h2. Assume that for one side ` of T and
f ∈ Hk+1(T ) we have ∫

`

f q = 0 ∀q ∈ Pk(`). (2.5)

and, if k ≥ 1, ∫

T

f p = 0 ∀p ∈ Pk−1(T ). (2.6)

Then, there exists a constant C independent of T and f such that

‖f‖L2(T ) ≤ C
∑

i+j=k+1

hi
1h

j
2

∥∥∥∥∥
∂k+1f

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

. (2.7)

Proof. First we prove the result for the reference element T̂ which has vertices at
(0, 0), (1, 0) and (0, 1). Namely, we will show that if f̂ ∈ Hk+1(T̂ ) satisfies

∫
ˆ̀
f̂ q = 0 ∀q ∈ Pk(ˆ̀). (2.8)

and, if k ≥ 1, ∫

T

f̂ p = 0 ∀p ∈ Pk−1(T̂ ), (2.9)

where ˆ̀ is one of the sides of T̂ , then

‖f̂‖
L2(T̂ )

≤ C
∑

i+j=k+1

∥∥∥∥∥
∂k+1f̂

∂x̂i∂ŷj

∥∥∥∥∥
L2(T̂ )

. (2.10)

Let S0 = P0(T̂ ) and, for k ≥ 1, Sk be the orthogonal complement of Pk−1(T̂ )
in Pk(T̂ ). Then, ‖ . ‖L2(ˆ̀) is a norm on Sk. For k = 0 this is trivial and to see this
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for k ≥ 1 it is enough to check that if p ∈ Sk satisfies ‖p‖L2(ˆ̀) = 0, then p = 0. But,

‖p‖L2(ˆ̀) = 0 implies that p vanishes on ˆ̀ and therefore p = λ1q with q ∈ Pk−1(T̂ ),
where λ1 ∈ P1 is the function such that λ1 = 0 is the equation of the line containing
the side ˆ̀ (i.e., the so called barycentric coordinate). Now, since p ∈ Sk we have

∫

T̂

λ1 q2 = 0

and, since λ1 does not change sign in T̂ , it follows that q = 0 and so p = 0 as we
wanted to see.

In view of (2.9), the L2 orthogonal projection of f̂ on Pk(T̂ ), namely P̂kf̂ ,
belongs to Sk. Then, since Sk is a finite dimensional space, there exists a constant
C depending only on k and T̂ such that

‖P̂kf̂‖
L2(T̂ )

≤ C‖P̂kf̂‖L2(ˆ̀). (2.11)

On the other hand, using (2.8) we have

‖P̂kf̂‖2
L2(ˆ̀)

=
∫

ˆ̀
P̂kf̂ (P̂kf̂ − f̂) ≤ ‖P̂kf̂‖L2(ˆ̀)‖P̂kf̂ − f̂‖L2(ˆ̀)

which together with (2.11) gives

‖P̂kf̂‖
L2(T̂ )

≤ C‖P̂kf̂ − f̂‖L2(ˆ̀)

and then, using a standard trace theorem to bound the right hand side and known
error estimates for the L2 projection, we obtain

‖P̂kf̂‖
L2(T̂ )

≤ C‖P̂kf̂ − f̂‖
H1(T̂ )

≤ C
∑

i+j=k+1

∥∥∥∥∥
∂k+1f̂

∂x̂i∂ŷj

∥∥∥∥∥
L2(T̂ )

with another constant C depending only on k and T̂ . Therefore, (2.10) follows by
using the triangular inequality.

Assume without loss of generality that the vertex shared by the sides of T in
the directions ξ1 and ξ2 is at the origin. Then, T is the image of T̂ by the linear
map (

x
y

)
= B

(
x̂
ŷ

)

where the columns of B are given by h1ξ1 and h2ξ2. Therefore, if f̂(x̂, ŷ) = f(x, y)
then

∂k+1f̂

∂x̂i∂ŷj
= hi

1h
j
2

∂k+1f

∂ξi
1∂ξj

2

Then, (2.7) follows from (2.10) by changing variables.
Our next goal is to prove a result for the L2 orthogonal projection which will

be needed in our main theorem. For clarity we divide the proof in the following
two lemmas.

5



Lemma 2.2 Let T̂ be the triangle with vertices at (0, 0), (1, 0) and (0, 1). Given
(i, j) such that i + j = k we define

qij :=
∂k

∂xi∂yj

(
xiyj(1− x− y)k

)
.

Then, for any f ∈ Hk(T̂ ),
∫

T̂

qij f = (−1)k

∫

T̂

(
xiyj(1− x− y)k

) ∂kf

∂xi∂yj
. (2.12)

Proof. We want to prove that
∫

T̂

∂k

∂xi∂yj

(
xiyj (1− x− y)k

)
f = (−1)k

∫

T̂

(
xiyj(1− x− y)k

) ∂kf

∂xi∂yj

so, it is enough to see that the boundary terms arising in the integration by parts
vanish. For example, when we integrate by parts in the x variable the boundary
terms will be of the form

∫

∂T̂

∂l+j

∂xl∂yj

(
xiyj(1− x− y)k

) ∂i−1−lf

∂xi−1−l
n1

where n1 is the first component of the unit normal at the boundary and l = 0, . . . , i−
1. Since n1 = 0 on the side contained in the line {y = 0}, it is enough to see that

∂l+j

∂xl∂yj

(
xiyj(1− x− y)k

)
= 0 (2.13)

on the other two sides of T̂ . This derivative can be written as a sum of terms which,
up to a multiplicative constant, are of the form

xi−myj−n(1− x− y)k+m+n−l−j

with m = 0, . . . , l and n = 0, . . . , j. But, since l < i, we have m < i and l + j <
i+j = k and so in all of these terms the exponents of x and (1−x−y) are positive.
Therefore, (2.13) holds on the sides of T̂ contained in {x = 0} and {1− x− y = 0}
as we wanted to show.

Lemma 2.3 If T is the right triangle with vertices at (0, 0), (h1, 0) and (0, h2)
then, for any f ∈ Hk(T ) and any i, j such that i + j = k,

∥∥∥ ∂kPkf

∂xi∂yj

∥∥∥
L2(T )

≤ C
∥∥∥ ∂kf

∂xi∂yj

∥∥∥
L2(T )

with a constant C independent of the right triangle T .
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Proof. We prove the estimate for the reference triangle T̂ with vertices at (0, 0),
(1, 0) and (0, 1). Then, the result follows by making the change of variables (x, y) =
(h1x̂, h2ŷ).

Since the result is trivial for k = 0 we can assume that k ≥ 1. Fix (i, j) such that
i + j = k and let {p1, . . . , pN} be an orthonormal basis of the subspace S ⊂ Pk(T̂ )
expanded by

{xmyn : m + n ≤ k, (m,n) 6= (i, j)}.
From the definition of qij given in the previous lemma it is easy to check that
qij ∈ Pk. Moreover, since ∂kp

∂xi∂yj = 0 for all p ∈ S, it follows from (2.12) that qij is
orthogonal to S.

Then, defining pN+1 := qij/‖qij‖L2(T̂ )
, we have that {p1, . . . , pN+1} is an or-

thonormal basis of Pk(T̂ ). Then

Pkf =
N+1∑
s=1

(∫

T̂

fps

)
ps

and, since ∂kps

∂xi∂yj = 0, for s = 1, . . . , N , we have

∂kPkf

∂xi∂yj
=

(∫

T̂

fpN+1

)
∂kpN+1

∂xi∂yj
(2.14)

but, it follows from (2.12) that
∫

T̂

fpN+1 =
(−1)k

‖qij‖L2(T̂ )

∫

T̂

(
xiyj(1− x− y)k

) ∂kf

∂xi∂yj

which together with (2.14) and an application of Schwarz inequality gives

∥∥∥ ∂kPkf

∂xi∂yj

∥∥∥
L2(T̂ )

≤ Ĉ
∥∥∥ ∂kf

∂xi∂yj

∥∥∥
L2(T̂ )

as we wanted to prove.
To end with the preliminary results we give in the next lemma a relation between

derivatives of a function in RT k(T ) and derivatives of its divergence.

Lemma 2.4 If T is a triangle and u ∈ RT k(T ) then

∂k+1u
∂xk+1

=
(k + 1

k + 2
∂k(divu)

∂xk
, 0

)
,

∂k+1u
∂yk+1

=
(
0 ,

k + 1
k + 2

∂k(divu)
∂yk

)

and for i + j = k + 1, with i > 0 and j > 0,

∂k+1u
∂xi∂yj

=
( i

2 + k

∂kdivu
∂xi−1∂yj

,
j

2 + k

∂kdivu
∂xi∂yj−1

)
.
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Proof. Any function u ∈ RT k(T ) can be written as u = p + (xq, yq) with p ∈ P2
k

and q ∈ Pk. An elementary computation shows that

∂k+1u
∂xk+1

=
(
(k + 1)

∂kq

∂xk
, 0

)
,

∂k+1u
∂yk+1

=
(
0 , (k + 1)

∂kq

∂yk

)

and, for any positive i, j such that i + j = k + 1,

∂k+1u
∂xi∂yj

=
(
i

∂kq

∂xi−1∂yj
, j

∂kq

∂xi∂yj−1

)
.

On the other hand, for l + m = k

∂k(divu)
∂xl∂ym

= (k + 2)
∂kq

∂xl∂ym
.

Then the Lemma is easily obtained.
Now we are ready to prove our main result. Given a triangle T we call hT the

longest side of T . We will also use the notation

Dmf =
∑

i+j=m

∣∣∣∣
∂mf

∂xi∂yj

∣∣∣∣

and a tilde over operators will indicate that the derivatives are taken with respect
to (x̃, ỹ).

Theorem 2.5 Let T be a triangle with maximum angle α. Let h1 and h2 be the
lengths of the sides adjacent to α and ξ1 and ξ2 be unit vectors in the directions of
those sides. Then, for any function v ∈ Hk+1(T )2,

‖v −Πkv‖L2(T ) ≤
C

sin α





∑

i+j=k+1

hi
1h

j
2

∥∥∥∥∥
∂k+1v

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

+ hk+1
T ‖Dkdivv‖L2(T )





(2.15)
with a constant C independent of T .

Proof. In view of (2.2) and (2.3), for any side `s of T the function (v−Πkv) · ns,
where ns denotes the unit exterior normal on `s, satisfies conditions (2.6) and (2.5)
of Lemma 2.1, and therefore

‖(v −Πkv) · ns‖L2(T ) ≤ C
∑

i+j=k+1

hi
1h

j
2

∥∥∥∥∥
∂k+1 [(v −Πkv) · ns]

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

.

But, choosing `1 and `2 as the sides with directions ξ1 and ξ2, it is not difficult to
see that

‖v −Πkv‖L2(T ) ≤
C

sin α
{‖(v −Πkv) · n1‖L2(T ) + ‖(v −Πkv) · n2‖L2(T )}
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and then,

‖v −Πkv‖L2(T ) ≤
C

sinα

∑

i+j=k+1

hi
1h

j
2

∥∥∥∥∥
∂k+1(v −Πkv)

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

. (2.16)

Then (2.15) is obtained from the inequality

∑

i+j=k+1

∥∥∥∥∥
∂k+1Πkv

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

≤ C
∥∥Dkdivv

∥∥
L2(T )

, (2.17)

that we will prove in what follows.
Without loss of generality we can assume that T has vertices at (0, 0), (h1, 0)

and (a, b), and that the vertex corresponding to the maximum angle is at (0,0).
Then ξ1 = (1, 0) and ξ2 = ( a

h2
, b

h2
).

Consider the right triangle T̃ with vertices at (0, 0), (h1, 0) and (0, h2). Then,
the linear transformation (x, y) = F (x̃, ỹ) defined as

(
x
y

)
= B

(
x̃
ỹ

)

with

B =
(

1 a
h2

0 b
h2

)

maps T̃ onto T (see Figure 2). We have

‖B‖2 ≤
√

2 (2.18)

where ‖ . ‖2 denotes the matrix norm associated with the euclidean norm.
Now, given v ∈ Hk+1(T )2, we define the corresponding function ṽ ∈ Hk+1(T̃ )2

via the Piola transform, that is,

v(x, y) =
1

| detB|B ṽ(x̃, ỹ) , (x, y) ∈ T.

Then, we have

divv =
1

| detB| d̃iv ṽ (2.19)

Denoting by Π̃k the Raviart-Thomas interpolation on T̃ , it is proved in [12, page
303] that

Πkv(x, y) =
1

| detB|B Π̃kṽ(x̃, ỹ) , (x, y) ∈ T.

Then, we have
∂k+1Πkv

∂ξi
1∂ξj

2

(x, y) =
1

| detB| B
∂k+1Π̃kṽ
∂x̃i∂ỹj

(x̃, ỹ),
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and, therefore,
∥∥∥∥∥

∂k+1Πkv

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

≤ ‖B‖2
| detB| 12

∥∥∥∥∥
∂k+1Π̃kṽ
∂x̃i∂ỹj

∥∥∥∥∥
L2(T̃ )

.

Now, since Π̃kṽ ∈ RT k(T̃ ), using Lemma 2.4, the commutative diagram property
(2.4) for Π̃k, Lemma 2.3 in T̃ and (2.19), we have

∑

i+j=k+1

∥∥∥∥∥
∂k+1Πkv

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

≤ ‖B‖2
|detB| 12

∑

i+j=k+1

∥∥∥∥∥
∂k+1Π̃kṽ
∂x̃i∂ỹj

∥∥∥∥∥
L2(T̃ )

≤ C
‖B‖2

|det B| 12
∥∥∥D̃kd̃iv Π̃kṽ

∥∥∥
L2(T̃ )

≤ C
‖B‖2

|det B| 12
∥∥∥D̃kP̃kd̃iv ṽ

∥∥∥
L2(T̃ )

≤ C
‖B‖2

|det B| 12
∥∥∥D̃kd̃iv ṽ

∥∥∥
L2(T̃ )

≤ C‖B‖k+1
2

∥∥Dkdivv
∥∥

L2(T )
,

then (2.17) follows by using (2.18).

Remark 2.1 It is possible to prove error estimates for the Raviart-Thomas inter-
polation under the maximum angle condition without using the Piola transform.
However, the dependence of the constant on the maximum angle of T obtained in
this way is worse than that in Theorem 2.5.
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Indeed, using the same change of variables from a right triangle T̃ onto T
as in Theorem 2.5, and the estimate given in Lemma 2.3 we can prove, for any
f ∈ Hk(T ),

‖DkPkf‖L2(T ) ≤
C

(sinα)k
‖Dkf‖L2(T ) (2.20)

where α is the maximum angle of T .
Then, using Lemma 2.4, the commutative diagram property for Πk (2.4) and

(2.20) we have

∑

i+j=k+1

∥∥∥∥∥
∂k+1Πkv

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

≤ ‖B‖k+1
2

∑

i+j=k+1

∥∥∥∥
∂k+1Πkv
∂xi∂yj

∥∥∥∥
L2(T )

≤ C‖B‖k+1
2

∑

i+j=k+1

∥∥Dkdiv Πkv
∥∥

L2(T )

= C‖B‖k+1
2

∑

i+j=k+1

∥∥DkPkdivv
∥∥

L2(T )

≤ C

(sin α)k
‖B‖k+1

2

∑

i+j=k+1

∥∥Dkdivv
∥∥

L2(T )
.

This inequality, together with (2.16) and (2.18) gives

‖v−Πkv‖L2(T ) ≤
C

sin α





∑

i+j=k+1

hi
1h

j
2

∥∥∥∥∥
∂k+1v

∂ξi
1∂ξj

2

∥∥∥∥∥
L2(T )

+
hk+1

T

(sinα)k
‖Dkdivv‖L2(T )



 .

3 The three-dimensional case

The Raviart-Thomas spaces have been generalized to the three dimensional case by
Nedelec [11]. In this section we briefly explain how to extend the results previously
obtained to a class of tetrahedral elements satisfying a condition which is weaker
than regularity.

Following [1], we say that a tetrahedron K satisfies the regular vertex property
with a constant c̄ > 0 if there exist a vertex Z of K, called the regular vertex,
unit vectors ξi and scalars hi, i = 1, 2, 3, such that K is the convex hull of {Z} ∪
{Z + hiξi, i = 1, 2, 3}, and the matrix B made up with ξi as its columns verifies
| detB| ≥ c̄.

Given a tetrahedron K the spaces introduced in [11] are given, for k ≥ 0, by

RT k(K) = Pk(K)3 + (x, y, z)Pk(K).

Also in [11] it is proved that there exists an operator

Πk : H1(K)3 −→ RT k(K)
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such that
∫

F

Πkv · npk =
∫

F

v · npk ∀pk ∈ Pk(F ), ∀F face of K

and, if k ≥ 1,
∫

K

Πkv · pk−1 =
∫

K

v · pk−1 ∀pk−1 ∈ P3
k−1(K).

In what follows we state, for tetrahedral elements satisfying the regular vertex
property, an error estimate for Πk analogous to that given in Theorem 2.5. We will
mention without proof the 3d versions of Lemmas 2.1 and 2.3 that can be obtained
following the same arguments as in the 2d case.

We define the tetrahedron K̃ with vertices at (0, 0, 0), (h1, 0, 0), (0, h2, 0) and
(0, 0, h3). We denote by n1, n2 and n3 the normals to the faces of K̃ contained in
the planes x = 0, y = 0 and z = 0, respectively. For a tetrahedron K we call hK

its diameter.

Theorem 3.1 Let K be a tetrahedron satisfying the regular vertex property with a
constant c̄ and let hi and ξi, i = 1, 2, 3, be the lengths and unit directions correspond-
ing to the edges sharing the regular vertex Z. Then, for any function v ∈ Hk+1(K)3,

‖v−Πlv‖L2(K) ≤ C





∑

i+j+l=k+1

hi
1h

j
2h

l
3

∥∥∥∥∥
∂k+1v

∂ξi
1∂ξj

2∂ξl
3

∥∥∥∥∥
L2(K)

+ hk+1
K ‖Dkdivv‖L2(T )





with a constant C depending only on c̄.

Proof. From [1, Lemma 5.2] there exists a constant C depending only on c̄ such
that

‖v −Πkv‖L2(K) ≤ C

3∑
s=1

‖(v −Πkv) · ns‖L2(K).

We can apply to (v − Πlv) · ns a straightforward generalization of Lemma 2.1 to
obtain

‖v −Πkv‖L2(K) ≤ C
∑

i+j+l=k+1

hi
1h

j
2h

l
3

∥∥∥∥∥
∂k+1(v −Πkv)

∂ξi
1∂ξj

2∂ξl
3

∥∥∥∥∥
L2(K)

. (3.21)

Hence, we have to prove

∑

i+j+l=k+1

∥∥∥∥∥
∂k+1Πkv

∂ξi
1∂ξj

2∂ξl
3

∥∥∥∥∥
L2(K)

≤ C
∥∥Dkdivv

∥∥
L2(K)

.

Without loss of generality, we can assume that K has vertices (0, 0, 0), (h1, 0, 0),
(a2, b2, 0) and (a3, b3, c3) and that it satisfies the definition of the regular vertex
property with Z = (0, 0, 0), ξ1 = (1, 0, 0), ξ2 = 1

h2
(a2, b2, 0) and ξ3 = 1

h3
(a3, b3, c3).
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The linear transformation



x
y
z


 = B




x̃
ỹ
z̃




with

B =




1 a2
h2

a3
h3

0 b2
h2

b3
h3

0 0 c3
h3




maps K̃ onto K.
Moreover, it is easy to check that

‖B‖2 ≤ 3
√

3.

For v ∈ Hk+1(K)3 we can consider ṽ ∈ Hk+1(K̃)3 defined by the Piola Trans-
form

v =
1

| detB|B ṽ.

Then, as in the proof of Theorem 2.15, we have
∥∥∥∥∥

∂k+1Πkv

∂ξi
1∂ξj

2∂ξl
3

∥∥∥∥∥
L2(K)

≤ ‖B‖2
| detB| 12

∥∥∥∥∥
∂k+1Π̃lṽ
∂x̃i∂ỹj∂z̃l

∥∥∥∥∥
L2(K̃)

.

But, as in the 2d case, for any tetrahedral element T we can write the derivatives
of order k + 1 of u ∈ RT k(T ) in terms of the derivatives of its divergence, namely,

∂k+1u
∂xk+1

=
(k + 1

k + 3
∂k(divu)

∂xk
, 0, 0

)

∂k+1u
∂yk+1

=
(
0 ,

k + 1
k + 3

∂k(divu)
∂yk

, 0
)

∂k+1u
∂zk+1

=
(
0 , 0 ,

k + 1
k + 3

∂k(divu)
∂zk

)

and for i + j + l = k + 1, with i > 0, j > 0 and l > 0,

∂k+1u
∂xi∂yj∂zl

=
( i

k + 3
∂ldivu

∂xi−1∂yj∂zl
,

j

k + 3
∂ldivu

∂xi∂yj−1∂zl
,

l

k + 3
∂kdivu

∂xi∂yj∂zl−1

)
.

We conclude, as in the last part of the proof of Theorem 2.5, by using the
commutative diagram property of Π̃k and by observing that Lemma 2.3 has a
straightforward extension to the element K̃.
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