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Abstract. We prove the discrete compactness property of the edge elements of any order on a class
of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have
been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519–549]. They are
appropriately graded near singular corners and edges of the polyhedron.
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1. Introduction 1

In the theoretical analysis of finite element methods for Maxwell’s equations we can distinguish two basic 2

problems. The first one is to compute the eigenvalues (or resonant frequencies) of a bounded cavity. The second 3

one is to compute the electromagnetic field in the cavity due to a known current source (at a nonresonant 4

frequency). Edge finite elements have been used to approximate both problems, and the convergence was studied 5

in several papers. The discrete compactness property is a useful tool for this analysis. 6

Assuming that Ω ⊂ R
3 is a bounded Lipschitz polyhedral domain, with boundary ∂Ω and unit outward 7

normal n, the eigenvalue problem is to find an electric field E �= 0 and an electric eigenvalue λ such that 8

curl curlE = λE in Ω, 9

divE = 0 in Ω, 10

n× E = 0 on ∂Ω. 11

On the other hand, given a wave number k > 0 of the time harmonic field in Ω such that k2 is not an electric 12

eigenvalue of Ω, and a divergence free current distribution J , the source problem is to find the electric field E 13
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2 A.L. LOMBARDI

which satisfies1

curl curlE − k2E = −J in Ω,2

divE = 0 in Ω,3

n× E = 0 on ∂Ω.4

The theory of both problems is well studied in the literature, see for example [11] and references therein. Also,5

the numerical approximation was considered in several articles (see [3,8,13] and their references). Let us mention6

a few of them.7

In [9] the approximation of the eigenvalue problem by edge elements was considered. There, the discrete com-8

pactness property was first introduced, and proved, for elements of lowest degree on shape-regular tetrahedral9

meshes.10

In [6] the authors proved, using and inductive approach, the validity of the discrete compactness property11

for tetrahedral edge elements (actually, for Nédélec elements of first and second class) of any order on regular12

triangulations of a polyhedron. Using this result, they have obtained the convergence of the corresponding13

approximations of the Maxwell eigenvalue problem. Precisely, they proved that the edge elements give spurious-14

free approximations of the eigenvalue problem, in the sense of [5]. We point out that in [6] a quite general setting15

is considered, including anisotropic and discontinuous materials and mixed boundary conditions.16

Also in [2], for the eigenvalue problem (with a different boundary condition), the good approximation proper-17

ties of edge elements of any order are shown on regular tetrahedral meshes. There, the author consider a mixed18

method, which is equivalent, in the present situation, to the primal method of [6] (see [3], Sect. 5). The discrete19

compactness property (in the form considered here) is then indirectly established.20

In [14], the approximation of Maxwell eigenvalue and source problems by edge elements of any order on21

tetrahedral and hexahedral meshes was analyzed following the theory of collectively compact operators. The22

discrete compactness property of the approximation spaces is used there to verify that indeed that theory can23

be applied. A weakly quasi-uniform assumption on the meshes is made in this paper, besides the standard shape24

regularity hypothesis. We also refer to [13], Chapter 7, where improvements and extensions of [14] are presented.25

We observe that narrow elements and anisotropically refined meshes are excluded in the analysis of the26

mentioned papers. However, the validity of the discrete compactness property on meshes adapted to edge27

or corner singularities was also considered. In [4] the discrete compactness property was obtained for edge28

elements on suitably refined meshes. This property combined with interpolation results was used to prove29

optimal algebraic convergence for both the source and eigenvalue problems. The results hold for elements of30

arbitrary order on hexahedral meshes, but in the case of tetrahedral meshes the analysis is limited to the lowest31

order case.32

The problem was also considered in [16]. There, edge spaces of the lowest order on a polyhedral domain with33

an edge were considered on meshes which are obtained from an appropriated refined tensor product pentahedral34

mesh, by dividing each pentahedron into three tetrahedra. Corner singularities were not considered.35

The goal of this paper is to prove that the discrete compactness property holds for tetrahedral edge elements36

of any order, on anisotropically refined meshes on a general Lipschitz polyhedral domain. We consider edge and37

corner refinements. More precisely, our meshes are proposed in order to be able to adequately approximate a38

homogeneous Dirichlet problem for the Laplace operator with a right hand side in Lp for some p > 2. These39

meshes were designed in [1]. So, the results contained in that article become fundamental for our approach.40

The meshes considered in [4] satisfy our requirements. Therefore, we are extending the results of [4] to the41

case of tetrahedral meshes and elements of any order.42

Our analysis has similarities with the ones developed in [4, 16]. In particular, the key ingredients of our43

approach are:44

• Suitable decompositions of certain vector fields in H0(curl , Ω).45

• Interpolation error estimates for edge elements of any order on anisotropic meshes satisfying the maximum46

angle condition [12].47
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DISCRETE COMPACTNESS PROPERTY FOR ANISOTROPIC EDGE ELEMENTS 3

• Control by below of the volume of the elements of the mesh in terms of the mesh-size parameter. 1

• Accurate error estimates for a continuous piecewise polynomial interpolation of the H1
0 (Ω)-solution of the 2

scalar Laplace equation with right hand side in Lp [1]. 3

The last point deserves a further comment. In our analysis we use known estimates for Lagrange interpolation on 4

anisotropic meshes, and the major assumptions on the meshes are in order to ensure that such results indeed hold 5

true. However, the approach allows to replace Lagrange by other scalar piecewise polynomials interpolations, 6

changing eventually the mesh restrictions. This issue, which is a difference with the theory of [4], may be further 7

analyzed in the future. In [4] the scalar interpolation that commutes with the edge interpolation in the De Rham 8

diagram needed to be used. 9

In Section 2 we introduce the notation, definitions and preliminary results used in the paper. In Section 3 the 10

assumptions on the meshes are introduced. Further specifications on the parameters introduced in this Section 11

are given later. In Section 4 auxiliary propositions that are used to prove the main result are established. Finally, 12

in Section 5 the discrete compactness property of the finite element spaces introduced in Section 2 is proved. 13

2. Notation and preliminaries 14

We assume that the domain Ω ⊂ R
3 is a Lipschitz polyhedron. We consider the space H(curl , Ω) of vector 15

fields in [L2(Ω)]3 with curl in [L2(Ω)]3. It is a Hilbert space with the scalar product 16

〈v,w〉 = (v,w) + (curl v, curlw), v,w ∈ H(curl , Ω), 17

and the norm ‖ · ‖H(curl ,Ω) induced by this product. Here, (·, ·) indicates the usual L2(Ω) scalar product. The 18

set of functions v ∈ H(curl , Ω) such that v × n = 0 on ∂Ω is denoted by H0(curl , Ω), where n is the unitary 19

exterior normal to ∂Ω. 20

It is known that the embedding of H0(curl , Ω) into [L2(Ω)]3 is not compact, but one obtains a compact 21

embedding if H0(curl , Ω) is replaced by its subspace X defined by 22

X = {v ∈ H0(curl , Ω) : divv = 0 on Ω} . 23

In order to introduce the discrete spaces, we assume that a family of conforming meshes {Th : h ∈ I} made up 24

of tetrahedra is given on Ω. We assume, as usual, that h denotes the mesh-size parameter and I is a denumerable 25

and bounded set of positive numbers having zero as the only limit point. From now on, h will always denote an 26

element of I (or some subset J of I). Further conditions on the meshes shall be assumed in Section 3. 27

Let k ≥ 1 be a natural number (fixed along the paper), and letK ⊂ R
3 be a tetrahedron. Denote by Pl(K) the 28

set of polynomials on K of degree less than or equal l, and by P̃l(K) its subspace of homogeneous polynomials. 29

The first Nédélec family of edge elements [15] on K of degree k, Nk(K), is the subspace of [Pk(K)]3 given by 30

(see for Exm. [7]) 31

Nk(K) = [Pk−1(K)]3 ⊕ Jk(K) 32

where 33

Jk(K) =
{
p ∈ [P̃k(K)]3 : p(x) · x ≡ 0

}
. 34

It is not difficult to check [12] that 35

Nk(K) = [Pk−1(K)]3 ⊕ [P̃k−1(K)]3 × x. 36

Now the space of edge elements, Vh, is 37

Vh = {vh ∈ H0(curl , Ω) : vh|K ∈ Nk(K), ∀K ∈ Th} . 38
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4 A.L. LOMBARDI

The divergence free condition of the functions in X can not be forced into the discrete spaces, but only imitated1

in the form of “discrete divergence free condition”: the discrete counterpart of X is Xh defined as2

Xh = {vh ∈ Vh : (∇ph,vh) = 0, ∀ph ∈ Sh} ,3

where4

Sh =
{
ph ∈ H1

0 (Ω) : ph|K ∈ Pk(K), ∀K ∈ Th

}
.5

Then we have ∇Sh ⊂ Vh and (see, for example, Cor. 5.1 of [7])6

Vh = ∇Sh ⊕Xh.7

A question that naturally arises is whether, and in which sense, the spaces Xh inherit the compactness8

property of the space X . This question can be treated in terms of the following definition. Here, J denotes an9

arbitrary denumerable subset of I.10

Definition 2.1. We say that the family of spaces {Xh}h∈I satisfies the “discrete compactness property” if for11

each sequence {vh}h∈J, J ⊆ I, verifying12

vh ∈ Xh, ∀h ∈ J, (2.1)13

‖vh‖H0(curl ,Ω) ≤ C, ∀h ∈ J, (2.2)14

there exists a function v ∈ X and a subsequence {vhn}n∈N such that (for n→ ∞)15

vhn → v in L2(Ω) (2.3)16

vhn ⇀ v weakly in H0(curl , Ω). (2.4)17

Finally, we need to discuss the regularity of the solution of the scalar Laplace equation18

−Δu = f, in Ω, u = 0, on ∂Ω,19

with f ∈ Lp(Ω), p > 2, remembering that Ω is a Lipschitz polyhedron. This regularity will be used to define20

the mehses, in Section 3, in order to be able to estimate the H1-seminorm of the linear Lagrange interpolation21

error for a solution of this problem, for values of p close to 2, in a satisfactory way. We follow the article [1].22

Let S be a corner of Ω. Let CS be the infinite polyhedral cone that coincides with Ω in a neighborhood of23

S. Define GS = CS ∩ S2(S), where S2(S) is the unit sphere centered at S. Then, the vertex singular exponent24

related to S is given by λv,S = − 1
2 +

√
λS,1 + 1

4 , where λS,k > 0, k = 1, . . ., are the eigenvalues, in increasing25

order, of the Laplace-Beltrami operator on GS with Dirichlet boundary conditions. Note that λv,S > 0. We say26

that the vertex S is p-singular if λv,S < 2 − 3
p .27

Now, let A be an edge of Ω. The edge singular exponent related to A is λe,A = π/ωA, with ωA being the28

angle between the two faces containing A. Note that λe,A > 1
2 . We say that A is p-singular if λe,A < 2 − 2

p .29

If a vertex or edge is not p-singular, we say that it is p-regular.30

We note that the singular exponents are independent of p, and that if a corner or an edge is p̄-singular, then31

they are also p-singular for all p > p̄. We make the following definition.32

Definition 2.2. A corner (resp. an edge) of Ω is singular if it is p-singular for some p ≤ 2. In the other case,33

we say that the corner (resp. the edge) is regular.34

It follows that we can decompose the set C of the corners of Ω into two disjoint subsets Cs and Cr containing35

the singular and regular corners, respectively. A similar decomposition E = Es ∪Er is done for the set E of edges36

of Ω. Then there exists a number p∗ > 2 such that37

S ∈ Cr ⇒ S is p-regular ∀p < p∗,38

A ∈ Er ⇒ A is p-regular ∀p < p∗.39

This number p∗ (that is not unique) will be kept fixed throughout the whole paper.40
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DISCRETE COMPACTNESS PROPERTY FOR ANISOTROPIC EDGE ELEMENTS 5

3. Graded meshes 1

In this section we enumerate the hypotheses on the meshes which we need to assume in order to obtain the 2

main result. For each value of the global mesh parameter h ∈ I, we consider a conforming subdivision Th of the 3

polyhedron Ω made up of tetrahedra such that for a constant C independent of h it holds 4

hK ≤ Ch ∀K ∈ Th, 5

where hK denotes de diameter of the element K. 6

3.1. The maximum angle condition 7

We assume that there exists a constant ψ̄ such that for all h ∈ I and each element K ∈ Th the following 8

property holds: the maximum angle between faces of K and the maximum angle inside the faces of K, are less 9

than or equal ψ̄. We denote this property of the family of meshes Th by MAC(ψ̄). 10

The maximum angle condition for tetrahedral meshes was first introduced in [10], as a generalization of the 11

Synge’s condition for triangles. Under this condition, uniform and anisotropic error estimates have been obtained 12

for different interpolation operators. In particular, we will use the results obtained for Lagrange interpolation 13

in [1] and for Nédélec interpolation in [12]. 14

3.2. Number of elements and their sizes 15

The number Nel,h of elements in Th is related to the global mesh parameter h by 16

Nel,h ≤ Ch−3, ∀h ∈ I, 17

with C independent of h. That is, the number of elements in the mesh Th is comparable with the one for a 18

quasiuniform mesh with elements of size ∼ h. 19

Furthermore, we need to have a control on the size of the smallest element on Th. So we assume that for a 20

number σ > 0 independent of h we have 21

|K| ≥ Chσ, ∀K ∈ Th, h ∈ I, (3.5)

with C independent of h. 22

3.3. Grading 23

We will use the finite element estimates for the Poisson equation with homogeneous Dirichlet conditions on 24

polyhedral domains obtained in [1]. So we need to introduce the kind of meshes used there. These meshes have 25

a particular refinement near some corners or edges of the domain, and those refinements are associated with a 26

parameter, μ� for edges and ν� for corners. Here we describe the meshes in terms of these abstract parameters, 27

and in the next section we specify them. 28

Let us introduce a decomposition Ω̄ = ∪L
�=1Λ̄� of the polyhedron Ω into L tetrahedral subdomains λ�, such 29

that each subdomain contain at most one singular edge and at most one singular corner. On each subdomain 30

Λ� is defined a Cartesian coordinate system (x�
1, x

�
2, x

�
3) such that one vertex of Λ� is located in the origin and 31

one edge of λ� is contained on the x�
3-axis. These vertex or edge coincide with the singular ones, if Λ� possesses 32

them. Also we introduce for each , refinement parameters λ�, μ� ∈ (0, 1], that will be specified in the next 33

section. Here only the condition μ� ≤ ν� if μ� < 1 is imposed. 34

We assume that the partitions Th fit the subdivisions {Λ�} for all h ∈ I. Now, let K ∈ Th fixed. Then there 35

exists a unique  such that K ⊆ Λ�. Then we define: 36

rK = inf
x∈K

[(x�
1)

2 + (x�
2)

2]
1
2 37

RK = inf
x∈K

[(x�
1)

2 + (x�
2)

2 + (x�
3)

2]
1
2 , 38
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6 A.L. LOMBARDI

that is, the distances from K to the x�
3-axis and the origin in the  local cartesian system. Consider the following1

size parameters:2

ζK,e =

{
h

1
μ� if rK = 0,

hr1−μ�

K if rK > 0,
ζK,v =

{
h

1
ν� if 0 ≤ RK ≤ h

1
ν� ,

hR1−ν�

K if RK ≥ h
1

ν� ,
3

and let hK,i be the length of the projection of K on the axis x�
i , i = 1, 2, 3. Then we assume:4

• if μ� < 1 then hK,1 ∼ ζK,e, hK,2 ∼ ζK,e, and hK,3 ≤ ζK,v, and if rK = 0 we demand hK,3 ∼ ζK,v;5

• if μ� = 1 then hK,i ≤ ζK,v, i = 1, 2, 3, and hK,i ∼ ζK,v if RK = 0.6

Finally, it is assumed that if Λ� possesses neither singular vertex nor singular edge, then its subdivision7

inherited from Th is shape regular uniformly in h.8

3.4. Existence of meshes with all the requirements9

A construction of a mesh on a general polyhedron is carefully showed in [1]. There, the authors construct10

partitions of each Λ� by distinguishing between four cases: (i) Λ� contains neither singular corner nor singular11

edge, (ii) Λ� contains a singular corner but no singular edge, (iii) Λ� contains a singular edge but no singular12

corner, and (iv) Λ� contains both singular corner and singular edge.13

We point out that the smallest elements are the ones that have a vertex on a singular corner or an edge on a14

singular edge. Their sizes are of order h3/μ� or h3/ν� , so requirement (3.5) holds with σ = 3 max�{1/μ�, 1/ν�}.15

Remark 3.1. Let us show that the conditions on the meshes just introduced include Assumption 2k,β of16

Section 5.1 of [4]. To do that, we will assume that μ� = ν� = τ for all  (we can take τ as the minimum between17

the refinement parameters, thus obtaining, possibly, an over-refined mesh), and in our assumptions we change18

the sign ≤ by ∼.19

Taking into account that in [4] a local coordinate system is considered near each edge, we have to compare20

the lengths hK,i of our elements, with the lengths di of elements there, according to their relative position. In21

both cases, the third coordinate direction, corresponds to the direction of the edge that is considered. Using the22

notation V0
c ,V0

e and Vc
e of [4], we have23

1. if K ∈ V0
c , then Rk ∼ rK , and then ζK,v ∼ ζK,e. It follows that hK,i ∼ ζK,v as in [4] if τ = β/k;24

2. if K ∈ V0
e , then K is far away from the corners, so RK ∼ 1. It follows that hK,3 ∼ ζK,v ∼ h, while hK,i ∼ ζK,e25

(if τ < 1). This coincides with [4] if τ = β/k;26

3. if K ∈ Vc
e , then we are taking hK,1 ∼ ζK,e, hK,2 ∼ ζK,e, and hK,3 ∼ ζK,v. This coincides with [4] if τ = β/k.27

Observe that, with 0 < τ < 1, if RK ≤ h
1
τ (resp. RK ∼ h

1
τ ) then hR1−τ

K ≤ h
1
τ (resp. hR1−τ

K ∼ h
1
τ );28

4. finally, elements in V0 are far away the corners and edges, and their lengths are of order h in both cases.29

4. Auxiliary propositions30

In this Section we obtain some results that will be used in what follows to prove the main theorem of the31

paper. We consider a sequence {vh}h∈J, J ⊆ I, of discrete functions satisfying the conditions (2.1) and (2.2).32

This sequence is maintained fixed along the rest of the paper.33

For each h ∈ J, define vh as the solution of the problem34

vh ∈ H0(curl , Ω), curl vh = curl vh, divvh = 0.35

The existence of vh is a consequence of Theorem 3.6 in [7]. Now, we know from Lemma 12 in [4] that for each36

p ≥ 2 we can split vh as37

vh = wh + ∇qh (4.6)
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DISCRETE COMPACTNESS PROPERTY FOR ANISOTROPIC EDGE ELEMENTS 7

with 1

wh ∈W 1,p
0 (Ω)3, qh ∈ H1

0 (Ω), Δ, qh ∈ Lp(Ω), (4.7)

and 2

‖wh‖W 1,p(Ω) + ‖Δqh‖Lp(Ω) ≤ ‖vh‖X + ‖curl vh‖Lp(Ω). (4.8)

As was pointed in [4] (proof of Corollary 3), the functions qh verify 3

qh ∈ H
3
2 +s(Ω) for some s > 0, 4

and so they are in C(Ω̄). Let 5

Ih : C(Ω̄) → {p ∈ H1(Ω) : p|K ∈ P1(K), ∀K ∈ Th} 6

be the piecewise linear Lagrange interpolation operator. It follows that Ih(qh) is well defined, for all h. We also 7

need the Nédélec interpolation operator 8

Πh : W 1,p(Ω) → {vh ∈ H(curl , Ω) : vh|K ∈ Nk(K), ∀K ∈ Th} , p > 2. 9

For a function w it is defined by 10

(Πhw)|K = ΠK(w|K), ∀K ∈ Th 11

where ΠKw is the unique function in Nk(K) such that: 12∫
e

ΠKv · t q =
∫

e

v · t q, ∀q ∈ Pk−1(e), ∀e edge of K, (4.9) 13∫
f

ΠKv × n · q =
∫

f

v × n · q, ∀q ∈ [Pk−2(f)]2, ∀f face of K, (4.10) 14∫
K

ΠKv · q =
∫

K

v · q, ∀q ∈ [Pk−3(K)]3 (4.11) 15

(t denotes a unitary tangent field on the edge e, n denotes the exterior normal field to K on the face f). It is 16

well known [7, 15] that the degrees of freedom (4.9)–(4.11) define ΠKv uniquely. 17

We observe that {vh} ⊂ X , and X ⊂ [L2(Ω)]3 with compact inclusion. So, we can hope to obtain convergence 18

properties for {vh} from properties of {vh}. The next Proposition is a step in this direction. To prove it, we 19

use the commutative property 20

curl (ΠKw) = RT K(curlw) (4.12)

valid for fields w such that w|K and its curl are in W 1,p(K) (see, for example, Sects. 2 and 3 of [4]). Here, RT K 21

denotes the Raviart-Thomas interpolation of degree k on K, we refer to [17] for its definition and properties. 22

We will use that 23

RT Kw = w, ∀w ∈ [Pk−1(K)]3. (4.13)

Proposition 4.1. Suppose that wh and qh satisfy (4.6)–(4.8) for some p > 2. With Πh and Ih the Nédélec 24

and Lagrange interpolation operators introduced before, we have 25

‖vh − vh‖H0(curl ,Ω) ≤ ‖wh −Πhwh‖L2(Ω) + ‖∇(qh − Ihq
h)‖L2(Ω). (4.14)

Proof. Since curl (vh − vh) = 0 we have ‖vh − vh‖H0(curl ,Ω) = ‖vh − vh‖L2(Ω). Then 26

‖vh − vh‖2
L2(Ω) = (vh − vh,vh − vh) 27

= (vh − vh,wh + ∇qh − vh) 28

= (vh − vh,wh −Πhwh + ∇qh −∇Ihqh) 29

+ (vh − vh, Πhwh + ∇Ihqh − vh). 30
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8 A.L. LOMBARDI

Since vh ∈ Xh and Ihqh ∈ Sh, it follows that1

(vh,∇Ihqh) = 0.2

On the other hand, by using the commutative property (4.12) relating Nédélec and Raviart-Thomas operators3

we have for all K ∈ Th4

curl [ΠK(wh|K)] = RT K [curl (wh|K)]5

= RT K [curl (vh|K)]6

= RT K [curl (vh|K)]7

= curl (vh|K).8

We used property (4.13) in the last equality. Hence9

curl (Πhwh − vh) = 0,10

and therefore Πhwh − vh = ∇qh, for some qh ∈ Sh (see Rem. 5.7 of [7]), and now, since vh ∈ Xh we obtain11

(vh, Πhwh − vh) = 0.12

But we have then obtained that13

Πhwh + ∇Ihqh − vh = ∇(qh − Ihq
h), qh, q

h ∈ H1
0 (Ω),14

so, using that divvh = 0, we have15

(vh, Πhwh + ∇Ihqh − vh) = 0.16

Therefore17

(vh − vh, Πhwh + ∇Ihqh − vh) = 0,18

and we can conclude that19

‖vh − vh‖2
L2(Ω) = (vh − vh,wh −Πhwh + ∇qh −∇Ihqh)20

from which (4.14) follows. �21

Next, we estimate the edge interpolation error wh −Πhwh. We will use the following result.22

Proposition 4.2. Let k ≥ 1. Let K be a tetrahedron satisfying MAC(ψ̄). There exist three edges of K, i, i =23

1, 2, 3, and a constant C, such that if p > 2, then for all u ∈ [W 1,p(K)]3 with ∇curl u ∈ [Lp(K)]3, we have24

‖u−Πku‖Lp(K) ≤ C

{
3∑

i=1

hi

∥∥∥∥ ∂u∂ξi
∥∥∥∥

Lp(K)

+ h‖curl u‖Lp(K) + h

3∑
i=1

hi

∥∥∥∥∂curl u
∂ξi

∥∥∥∥
Lp(K)

}
, (4.15)

where hi denotes the lengths of i, ξi = i/‖i‖, i = 1, 2, 3, and h is the diameter of K. The constant C depends25

only on ψ̄, k and p, and it is independent of the function u. Furthermore, C can be chosen such that, in addition,26

if M ∈ R
3×3 is the matrix made up of ξi as columns, then ‖M‖, ‖M−1‖ ≤ C.27

Proof. This Proposition, but changing the last term in the right hand side of (4.15) by h2‖∇curl u‖Lp(K) is28

contained in Theorem 6.1 of [12]. One can check that (4.15) can be obtained by the same techniques used in29

that paper. �30
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Proposition 4.3. Suppose that wh (and qh) satisfies (4.6)–(4.8) for some p > 2. If the mesh satisfies MAC(ψ̄) 1

then 2

‖wh −Πhwh‖L2(Ω) ≤ Ch
(
‖vh‖H0(curl ,Ω) + ‖curl vh‖Lp(Ω)

)
, (4.16)

with the constant C depending on ψ̄. 3

Proof. We have 4

‖wh −Πhwh‖2
L2(Ω) =

∑
K∈Th

‖wh −Πhwh‖2
L2(K) 5

=
∑

K∈Th

∫
K

|wh −Πhwh|2 6

≤
∑

K∈Th

(∫
K

|wh −Πhwh|p
) 2

p

|K|1− 2
p 7

=
∑

K∈Th

‖wh −Πhwh‖2
Lp(Ω)|K|1− 2

p . 8

Now, fix an element K ∈ Th. From Section 3, we know that K satisfies MAC(ψ̄) for some ψ̄ independent of K 9

and h. From Proposition 4.2 we then have (hK ≤ Ch) 10

‖wh −Πkwh‖Lp(K) ≤ C

{
3∑

i=1

hK
i

∥∥∥∥∂wh

∂ξK
i

∥∥∥∥
Lp(K)

+ h‖curlwh‖Lp(K) + h

3∑
i=1

hK
i

∥∥∥∥∂curlwh

∂ξK
i

∥∥∥∥
Lp(K)

}
, 11

where hK
i = hi and ξK

i = ξi are the ones given by the Proposition. Now, by Hölder inequality and adding on 12

all the elements K ∈ Th we have 13

‖wh −Πhwh‖2
L2(Ω) ≤C

∑
K∈Th

(
3∑

i=1

hK
i

∥∥∥∥∂wh

∂ξK
i

∥∥∥∥
Lp(K)

)2

|K|1−
2
p + C

∑
K∈Th

(
h‖curlwh‖Lp(K)

)2 |K|1−
2
p 14

+ C
∑

K∈Th

(
3∑

i=1

hK
i

∥∥∥∥∂curlwh

∂ξK
i

∥∥∥∥
Lp(K)

)2

|K|1−
2
p 15

= : C(I + II + III). 1617

Use now the discrete Hölder inequality to obtain 18

I =
∑

K∈Th

(
3∑

i=1

hK
i

∥∥∥∥∂wh

∂ξK
i

∥∥∥∥
Lp(K)

)2

|K|1− 2
p 19

≤
[ ∑

K∈Th

(
3∑

i=1

hK
i

∥∥∥∥∂wh

∂ξK
i

∥∥∥∥
Lp(K)

)p] 2
p
( ∑

K∈Th

|K|
)1− 2

p

20

≤ h2
∣∣wh

∣∣2
W 1,p(Ω)

|Ω|1− 2
p . 21

We have used that due to the properties of matrix MK = M of Proposition 4.2, we have 22

|wh|W 1,p(K) ∼
3∑

i=1

∥∥∥∥∂wh

∂ξK
i

∥∥∥∥
Lp(K)

, 23

for all K ∈ Th. 24
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Since curlwh|K = curl vh|K ∈ [Pk−1(K)]3 for all K ∈ Th, we can use an inverse estimate obtaining1

‖curlwh‖2
Lp(K) ≤ |K| 2p−1‖curlwh‖L2(K). (4.17)

Therefore2

II ≤ h2‖curlw‖2
L2(Ω).3

Using now the inverse inequality (valid since curlwh|K ∈ [Pk−1(K)]3)4

hK
i

∥∥∥∥∂curlwh

∂ξK
i

∥∥∥∥
Lp(K)

≤ C‖curlwh‖Lp(K)5

and again (4.17), we obtain6

III ≤ h2‖curlwh‖2
L2(Ω).7

Hence, we have arrived at8

‖wh −Πhwh‖L2(Ω) ≤ Ch
(∣∣wh

∣∣
W 1,p(Ω)

+ ‖curlwh‖L2(Ω)

)
.9

Then, by noting that curlwh = curl vh and using (4.8) we have10 ∣∣wh
∣∣
W 1,p(Ω)

+ ‖curlwh‖L2(Ω) = C
(
‖vh‖H0(curl ,Ω) + ‖curl vh‖Lp(Ω)

)
+ ‖curl vh‖L2(Ω)11

≤ C
(
‖vh‖H0(curl ,Ω) + ‖curl vh‖Lp(Ω)

)
.12

Therefore, inequality (4.16) follows. �13

It remains to deal with the Lagrange interpolation error qh−Ihqh. We can use directly the results of [1], which14

we include below for the sake of completeness. We remark that we are assuming the conditions on the mesh15

(and on the refinement parameters μ� and ν�) established in Section 3. To obtain the following Proposition,16

restrictions on the refinement parameters need to be added. First we introduce some notation.17

Recall the decomposition Ω̄ = ∪L
� Λ̄� of Section 3.3. For each  = 1, . . . , L, we put λ�

v = λS,v if Λ� contains18

one singular vertex S of Ω, otherwise we put λ�
v = +∞. Similarly, we put λ�

e = Λe,A if Λ� contains one singular19

edge A of Ω, otherwise we take λ�
e = +∞.20

In addition to the number p∗ > 2 introduced in Section 2, we define a number p+ satisfying 2 < p+ ≤ 6 and21

λ�
v ≥ 1 − 2

p+
, λ�

e ≥ 1 − 1
p+
,22

for all  = 1, . . . , L. We observe that being λ�
v > 0 and λ�

e >
1
2 for all , such a number p+ can always be chosen.23

We are ready to state the next result.24

Proposition 4.4. Let p be such that 2 < p < min{p∗, p+}. Suppose that for all  = 1, . . . , L, μ� and ν� satisfy25

the following conditions:26

μ� < λ�
e

p

2p− 2
, (4.18)27

ν� <

(
λ�

v +
1
2

)
2p

5p− 6
, (4.19)28

1
ν�

(
5
2
− 3
p

)
+

1
μ�

(
λ�

v − 2 +
3
p

)
> 1. (4.20)29

Suppose that qh (and wh) satisfies (4.6)–(4.8) for some p > 2. Then we have30

‖∇(qh − Ihq
h)‖0,Ω ≤ Ch

(
‖vh‖X + ‖curl vh‖Lp(Ω)

)
. (4.21)
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Proof. Since for all h ∈ J 1

‖Δqh‖Lp(Ω) ≤ C
(
‖vh‖X + ‖curl vh‖Lp(Ω)

)
, 2

the proposition follows from Theorem 5.1 of [1]. � 3

Note that for p > 2 and μ� = ν�, (4.19) implies (4.20). 4

We close this section with a definition that will be used to prove the compactness result. 5

Definition 4.5. We say that the refinement parameters verify property (U) if they satisfy conditions (4.18)– 6

(4.20) uniformly for all 2 < p < p0 for some p0 > 2. 7

We point out that it is always possible to take μ� and ν� satisfying property (U). Indeed, we can proceed as 8

follows: 9

• If λ�
e ≤ 1, fix p0 > 2 and take 10

μ� = ν� < min
{
λ�

e

p0

2p0 − 2
,

(
λ�

v +
1
2

)
2p0

5p0 − 6

}
· 11

Then conditions (4.18) and (4.19) hold for all 2 < p < p0, and also condition (4.20) holds, since, in this case, 12

it follows from (4.19). 13

• If λ�
e > 1, then fix p0 > 2 such that λ�

e
p0

2p0−2 > 1. Then take μ� = 1 and ν� verifying 14

ν� <

(
λ�

v +
1
2

)
2p0

5p0 − 6
15

and small enough to have 16

1
ν�

(
5
2
− 3
p

)
+ λ�

v − 2 +
3
p
> 1 ∀ 2 < p < p0. 17

5. The discrete compactness property 18

In this section we prove that the family of discrete spaces {Xh}h∈I associated with the graded meshes 19

introduced in Section 3 verify the Discrete Compactness Property. We will make use of the next Proposition that 20

is an easy consequence of the results of Section 4. We continue using the notation introduced there, in particular, 21

{vh}h∈J is a sequence of discrete functions satisfying the conditions (2.1) and (2.2) (J is a denumerable subset 22

of I), and vh, h ∈ J, are defined in the beginning of Section 4. 23

Proposition 5.1. Suppose that the family of meshes Th verifies the requirements of Section 3 with refinements 24

parameters μ� and ν� satisfying property (U). Then, the sequence {vh}h∈J verifies 25

‖vh − vh‖H(curl ,Ω) → 0, for h→ 0 (h ∈ J). 26

Proof. Fixed p > 2, we consider, for each h, the decomposition (4.6) verifying (4.7) and (4.8). Since curl vh = 27

curl vh, we have ‖vh − vh‖H(curl ,Ω) = ‖vh − vh‖L2(Ω). It follows from Propositions 4.1, 4.3 and 4.4, that 28

‖vh − vh‖L2(Ω) ≤ Ch
(
‖vh‖X + ‖curl vh‖Lp(Ω)

)
. 29

We emphasize that the constant C in the previous equation depends on p. 30

Let σ = 3 max�{1/μ�, 1/ν�}. Then, using an inverse inequality, we obtain 31

‖curl vh‖Lp(Ω) ≤ Ch−σ( 1
p− 1

2 )‖curl vh‖L2(Ω). 32
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Therefore,1

‖vh − vh‖L2(Ω) ≤ Ch‖vh‖X + Ch1−σ( 1
p− 1

2 )‖curl vh‖L2(Ω).2

Now, taking into account the (U) property of the refinement parameters, choose p > 2 close enough to 2, such3

that4

α0 = 1 − σ

(
1
p
− 1

2

)
> 0,5

while conditions (4.18)–(4.20) remain valid for all . So, using this value of p in the previous computations, it6

follows that7

‖vh − vh‖L2(Ω) ≤ Chα0‖vh‖X ,8

from which the proof is concluded, since {vh} is bounded in X . �9

Now we are ready to prove the main result of the paper.10

Theorem 5.2. If the meshes Th satisfy the assumptions of Section 3, then the family of spaces {Xh} introduced11

in Section 2 verifies the discrete compactness property.12

Proof. Since {vh} is bounded in H0(curl , Ω) and divvh = 0 for all h ∈ J, it follows from Proposition 5.1 that13

{vh} is a bounded sequence in X . Taking into account that Ω is a bounded Lipschitz polyhedron, it follows from14

the Weber’s compactness result (Thms. 2.1 and 2.2 of [18]) that {vh} has an L2(Ω)-convergent subsequence15

{vhn}n∈N to a function v ∈ L2(Ω). We have divv = 0. Since H0(curl , Ω) (resp. X) is reflexive and {vhn} is16

bounded in H0(curl , Ω) (resp. X), taking a subsequence if necessary, we check that v ∈ H0(curl , Ω) (resp.17

v ∈ X) and vhn ⇀ v weakly in H0(curl , Ω).18

Now, using again Proposition 5.1 on one hand, and the reflexivity of H0(curl , Ω) on the other hand, we have19

that {vhn} converges strongly to v in L2(Ω), and, taking a subsequence if necessary, weakly in H0(curl , Ω). �20

6. Conclusions21

We have obtained the validity of the discrete compactness property for edge elements of any order on tetra-22

hedral triangulations of a general Lipschitz polyhedron. The meshes allowed include the standard graded ones23

proposed in the literature to deal with edge and corner singularities.24

The restrictions on the family of meshes are essentially imposed to ensure the validity of some estimates for25

the Lagrange interpolation of the solution of a homogeneous Dirichlet problem for the Laplace operator with26

right hand side in Lp with p > 2. However, the analysis allows the use of interpolations other than the Lagrange27

one. Further research with other interpolations is needed.28

Acknowledgements. I thank Irene Drelichman for her careful reading of the manuscript.29
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