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Abstract An a posteriori error estimate is derived for advection-diffusion problems dis-
cretized by means of an exponentially fitted Discontinuous Galerkin scheme. The approx-
imation scheme is defined for non-matching grid. The estimator, especially designed for
the advection dominated case, controls the energy norm as well as a semi—norm associated
with the advective derivative. The paper is supplemented by numerical experiments, where
the estimator is used as local error indicator for marking the triangles to be refined in an
adaptive strategy.
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1 Introduction

Advection-diffusion problems arise very frequently in applications and it is well known that
their numerical discretization requires special care when advection dominates over diffusion.
This is the case, for instance, in fluidynamic problems with high Reynolds number, or in
semiconductor device simulation under the action of a high electric field. Moreover, for
an effective numerical resolution, the presence of internal and/or boundary layers requires
adaptive strategies able to locally refine the mesh in the vicinity of the layers.
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We consider the stationary advection-diffusion model problem
—div(eVu—Bu)=f in Q,

u=g onlp, (nH

(eVu—Pu)-n=0 on Iy,

where Q is a convex polygonal domain in R? with boundary 9.Q = I, UIy, n is the unit
outward normal vector, and f, g are given functions, with f € L*(Q), and g € H'/?(I}).
Moreover, € = £(x) and § = 3(x) are given regular functions on  such that

Jep, gy suchthat gy > €e(x) > g >0, 2)
3bo suchthat div f > by > 0. A3)

Existence and uniqueness of the solution of (I) then follows by the usual maximum prin-
ciple. In [12] exponentially fitted Discontinuous Galerkin schemes (namely weak Interior
Penalty and weak Local-Discontinuous-Galerkin) for has been designed and studied,
showing very good performances in the advection dominated case, as well as in the inter-
mediate cases. In [7] a block solver has been proposed for a weakly penalized exponentially
fitted Incomplete—Interior—Penalty (EF-IIPGO) scheme.

We consider here the EF-IIPG0 method, extended to non-matching grids. We recall that
in [12l[7] only the conforming mesh case has been considered.

The EF-IIPGO scheme is particularly attractive for advection dominated problems, as
well as for diffusion problems, because it provides, on conforming weakly acute meshes,
an associated matrix with the M-matrix property, which, in particular, yields positive solu-
tions when positive data are considered, and it prevents spurious oscillations. We show this
property in Section 3]

The main result of the paper is the design and the analysis of an a posteriori error estima-
tor for the EF-ITPGO discretization scheme, allowing for non-matching grids. The obtained
estimator is used as local error indicator for marking the triangles to be refined (or derefined)
in an adaptive strategy. We point out that the use of a Discontinuous Galerkin scheme makes
the refining step particularly simple, because non-matching grids are allowed.

The estimator is robust, in the sense that yields an upper bound, independent of the
mesh size and the (small) diffusion coefficient, of the error measured in terms of the natural
energy norm and a dual semi—norm associated with the convective term. The numerical
experiments then confirm that the ratio between the estimator and the energy norm is indeed
independent of & and €. Robust error estimator for advection—diffusion problems have been
studied in [15,/18] for SUPG schemes and in [16] for a DG scheme (namely, an Interior
Penalty method, with upwind discretization of the convective term). Our analysis approach
follows [16], where the error is split into a conforming part and a (discontinuous) remainder.
The considered dual semi—norm for the convective term is the one proposed by [18] and used
by [16] in the DG framework. Here, an important feature of the upper bound is the presence
of a data approximation term which controls the exponential fitting approximation of the
flux €Vu — Bu. The numerical tests show that this term is of the same order as the error
estimator and it cannot be neglected in the actual implementation of the adaptive strategy.

Robust a posteriori estimation for advection-diffusion equations for DG schemes has
been also considered in the Ap-framework in [19]], and for the non-stationary case in [4].
Other approaches to energy norm estimate for Discontinuous Galerkin schemes for diffusive
problems can be found in [13], e.g., and in the references therein.
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The outline of the paper is as follows. Section [2] presents the discretization scheme on
non-matching grids. The hypotheses on the allowed meshes are described and the notation
used all over the paper are set. In Section [3]the M-matrix property of the EF-IIPGO scheme
on weakly acute conforming meshes is proved. Section [4] contains the presentation of the
estimator and the main result on the estimator. In Section [5] the adaptive algorithm is briefly
discussed and the numerical experiments are presented. Finally in the Appendix (Section[6)),
for the sake of completeness, we shortly sketch the a priori analysis for the [IPGO method
on non-conforming meshes for the pure diffusion problem.

2 Discretization

Let Q be a polygonal domain in R? with boundary dQ = I}, UI. We consider the space
H(%ID ={veH'(Q):v=00nIp}.
Let us introduce the bilinear form A : H'(Q) x H' () — R as

A(w,v) = /Q (eVw— Bw)- Vv dx. )

Then we can state the variational formulation of problem (T): Find u € H'(Q) such that
u=gonlpand

Au,v) = /Q fvdx  WeH (Q). 6))

Let {7}, be a family of shape regular decompositions (see for example [5]) of the
domain Q into triangles K. A generic edge of one of the triangles will be denoted by the
letter /. The notation Ik will be used for an edge of the triangle K. We are going to allow for
non-matching meshes (i.e., .7, may contain hanging nodes), with the following restriction.
In order to simplify the presentation of the exponential fitting scheme, we assume the very
natural condition that, given two neighboring triangles K, K’ € .}, then KN K’ is an (entire)
edge of either K or K’. For the analysis of our estimator we assume local quasi-uniformity
of the mesh, that is, if K N K’ # 0 then |K| ~ |K’|. Moreover, since we will use results from
[10,[11] we assume that .7, is obtained from a conforming mesh via a (fixed, independent of
h) finite number of refinement/coarsening steps. Finally, we assume that if a triangle edge /
meets 02, then either / C Ip or [ C Iy or [NJK2 is a vertex.

2.1 Notation

Since we are going to deal with Discontinuous Galerkin schemes, we shall need to write
integrals on the skeleton of the mesh. Due to the possible occurrence of hanging nodes, it
may happen that given an edge Ix of a triangle K there exists an element K’, neighbor of
K such that K N K’ & Ig. Therefore, we introduce the following notation for the set of the
intersections between triangles, that is

by={e=KNK :K,K' € F,,K#K'}.

We remark that if e = KN K’ € & then e is a complete edge of at least one of K and K’ but
not necessarily of both of them. We also set

Iy = Ue.

ecéy
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On the boundary, the skeleton of the triangulation is made of edges of triangles and &p
(resp. &y) will denote the set of triangle edges on Iy (resp. Iy). We write Ip = U,c 4, € and
Iy = UeegN e. Finally we denote I' = [ UIp U Iy and & = & U &p U 8.

The norm of L?(S) is denoted by | - [|o.s and the norm and seminorm of H*(S) by || - ||x.s
and |- | s, respectively. The subindex S is omitted when S = Q.

Let H 1(%) be the space of functions whose restriction to each element K belongs to
the Sobolev space H' (K). It is equipped with the h-dependent semi-norm

2 2
|V\17h = Z \V|1,K~

Ke,

The space of traces of functions in H'(.7,) is contained in Tr(I"), which is defined
as Tr(I") := Ike 5,L*(9K). Thus, functions in Tr(I") are double valued on Ij and single
valued on 9. For scalar functions g € Tr(I") and vector functions ¢ € Tr(I")?, following
[1], we introduce the averages {¢} and {¢}, and the jumps [[¢]] and [¢], on I" (using the
subscript e to denote their restriction to e). Let e = K| N K>, and let n; and n; be the outward
normals to K; and K3, respectively. If g; = g|yk; then we set

{ahe=ylar+a). [ale=am+qm:.

We define ¢; and ¢, analogously and we set

19)e= (01 +02), [01e=01-mi+ 0

Notice that these definitions do not depend on assigning an ordering to the elements K; and
K5. Also note that the jump of a scalar function is a vector parallel to the normal, and the
jump of a vector function is a scalar quantity. On boundary edges we set

{gte=q, [4qlle=aqn, {9}e=9, [9lle=¢-n onecaQ,

where 7 is the exterior normal of €.

Given an element K, the restriction of a function v to K is denoted by vk, even when
only the value on dK is considered. We shall also use the standard notation for the mean
value of a function f on a triangle K € .7, and on Ik edge of K, that is

]ifdxzfllq/dex, ]{des:‘l—i‘/ll{fds.

2.2 Exponentially fitted DG formulation

We define here the primal formulation of exponentially fitted Discontinuous Galerkin schemes
in the spirit of [12] in the case of nonconforming meshes. The finite element space V}, is the
set of piece-wise linear functions, that is,

Vi ={veL*(Q):vk € 2,(K),YK € F,}. (6)

Let £(x) and B(x) be piecewise constant functions. These functions can be viewed as
approximations of the actual coefficients in (I). However we prefer to keep the notation
€(x) and B(x) for them. We define a piecewise linear y (in general not continuous at the
interelements) whose gradient coincides with the constant S on the element K. We notice



A-posterior estimator for EF-IIPGO method 5

that such a y always exists, even if B(x) is a piece-wise constant approximation of a not
globally irrotational field. Locally on the triangle K, we can rewrite the flux variable o :=
€Vu — Bu in terms of the locally defined potential y as

szse%"(V(efg"(u). @)

In the subsequent construction of the scheme, we will make precise how to approximate the
. y e . Y e . :
coefficient €e¢ /¥ and the change of variable p = e~ ¢ Ky appearing in (7).

. . . v . .
First of all, we approximate the coefficient ge= K on K by means of its harmonic average
and thus we introduce the piecewise constant a;, defined by

)
aplg = —r.
nlk fx e V/edx

In order to define the approximated change of variable, we define first the local basis
functions (p,’;, i=1,2,3 onone element K. Fori=1,2,3, q),’; is the polynomial of degree 1
which takes the value 1 in the midpoint of the edge /i and the value 0 in the midpoint of the
other two edges (here, l}(, i =1,2,3 denote the three edges of K). For v € &;(K), we use
the notation

v(x) = v g (x) + V20 (x) + 7 9 (x).

Moreover, for K € .7, and I edge of K we define

E(K,Ig) = ]l e F & gy, (8)

Ik

Now we are ready to introduce the the operator T : V;, — V}, which is the approximation
of the change of variable. For all v € V,

(Tv)k := E(K, [g)v' ok + E(K, IRV @k + E(K, [V} 3. ©9)

We point out that the definition of E(K, [k ), and consequently of the operator T, is given
locally on the triangle K.

To set the discrete problem, we introduce the projection operator IT, : H'(.%,) — L*(I")?.

It is double-valued on the intersection of the triangles, and it is defined for e = KNK' € &
as

Myu = (IT5 (uk|e) TT5 (ugr|e)) (10)

where I1f is the L?-projection on the space of constant functions on e. It is similarly defined
on boundary edges, where it is single-valued. Analogously, we define the double-valued
function E(e) fore = KNK' € & as

E(e) = (E(KJK)7E(K/:IK’)>7

where I and lgs are the edges of K and K’ such that Ig N g = e. For a boundary edge, E(e)
is clearly single-valued.
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2.3 Discrete problem

The discrete problem reads: find u;, € Vj,, such that, for all v € V,

/ apVTuy, - Vi dxf/ vl -{anViTu} ds
Q IoUIp

+ [ ulu] - (] ds= [ fvder [ peMwds, (b
IyUlp Q Ip

where, for e = Ix NI/, and with the obvious changes for boundary edges, the penalization
parameter U is defined by

wle = 7% with &, = {Eay}e, (12)
e
where ¥ > Y for all e, with Y a constant independent of € and of 4.
Details on the choice of 7y are given in the Appendix, where the a priori analysis of the
IIPGO scheme for the pure diffusion problem is sketched (it amounts to taking ¥ = 0 in

(D).

Remark 1 Taking into account our definitions of the coefficient a;, and of the operator 7,
the quantity (a,Vj,Tuy)|k can be seen as an approximation of the flux ok, defined in (7).

Remark 2 We point out that the presence of the projection ITj, in the stabilization term (the
last term in the bilinear form in (TT)) has the effect of reducing the connectivity of the matrix
associated with the discretization (see Remark [ and [12]] for further details). Moreover, the
use of the projection is crucial for obtaining the M-matrix property when conforming meshes
are taken, as discussed in the next section.

3 M-matrix property of the EF-IIPG0 method

In this section we assume that .7}, is a conforming triangulation of Q of weakly acute type,
that is, the angles of each triangle in .7, do not exceed 7.

As basis functions of V}, we choose the piecewise linear functions @k ; which are defined
for an element K and an edge [ of K as

@k, (my 1) = Oy VK' € I, edge of K,

where m; g denotes the midpoint of the edge / of K. We remark that the functions in V), are
double-valued on Iy. We call Aj, the bilinear form on V;, x V,, defined by the left hand side
of (TT)). Then the stiffness matrix of the EF-IIPGO method can be written as M = (Mg ;. 1)
with

Mg 1. = An(Qk .1, Ok 1) K.K' € Fle Z(K),l'e Z(K'),
where .Z(K) denotes the set of edges of the triangle K. Finally we use the notation ng ; for

the outer normal to the edge / of K.
‘We have the next result.
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Fig. 1 Different situations of the edge /; of the element K.

Theorem 1 Suppose that J}, is a conforming triangulation of Q of weakly acute type and
that, for a given K, for every edge | € £ (K) it holds

U

> ah|1(E(K l)
2|K|

w>

where L is the penalization parameter over the edge [ (see (12)). Then the stiffness matrix
M is an M-matrix.

Proof Suppose that / is an edge of K and that K has not any side on the boundary of £2. We
use the notation introduced in Figure Eka), where [, and /3 are the other edges of K, K1,K;
and K3 are neighbors of K sharing the edges /1, /, and /3 respectively. We denote // the edge
l; viewed as an edge of K;. It follows that M ;, .k y # O only if

(K/JI) S {(K711)7 (Kv 12)7 (K7 13)’ (Klvli)7 (K2vlé)7 (K37l'/5)} . (13)

Taking into account that

iR K,
Voy, = { KI"KLOn
Pt { 0 elsewhere,

an explicit computation of the corresponding entries of M gives

1 1

Mgk, = Eah|KE(Kall)||K‘| + gy | 1],
1 L]l

Mg k0, = Eah|KE(Kall)| |I‘l| |nl<,ll AK
l Li||l3

Mg k0, = h|KE(K 11)| |I‘(‘| |711<,1l AR L (14)
1 AR

Mg k0 = HanlkE(K ) T K| — gy |l
1 1|22

My, = Eah|KE(Kall) K] nK ., MK b
1 Li||l3

My, k30, = h|KE(K Zl)' I |711<,11 K ;-

K]
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Since 7}, is weakly acute, we have that
Mg 1,:k.1, :MK,II;KZ,IQ <0, and Mk 1,k 15 :MK,II;K3,lg <0.

Moreover, if

|1
> E(K,l 15
.1111_2|K‘ah|1< (K,I1), (15)
then we also have My ; .x, S 0.
Therefore, for all off-diagonal entries, we have checked

MK,Il;K’,l’ <0 if (K,ll) #* (K/,l/). (16)
‘We also have
_ 4] _
Mg ).k = ah|KE(KJ1)m (|l |nk g, + 12lnk g, + 1|0k 13) kg, = 0.

(K"I"):K'e T l'e L (K")

Now we suppose that /; is an internal edge of K € .7}, and that K has the edge I, # /; on
the boundary of £, as depicted in Figure[I[b). Then, we have

MKJ];K,IZ = 07

while the other entries remain unchanged. It follows that property holds true and

1 Lk
Mg .y = —5011|1<E(K711)| I |"K,l| ngp, > 0.

(K 1)K €T, e L (K) K]
Finally, we consider the case in which /; is a boundary edge of K € .7}, while I, and I3 are
the other edges K, see Figure[I|c). In this case we have

Mg 1k, = My | ]

while the other entries remain as in the first considered case apart from My ; ... which is
not defined because /4 is a boundary edge. Then again holds true and if holds we
have
1 | l?
My k000 = _Eah|KE(K:ll)|7 + L] > 0.
(K ')V:K'€ T ' e L (K') |
Then we can apply, for instance [[14, Part III Theorem 3.1, page 279] to conclude that M is
a M-matrix. O

Remark 3 As already observed, the projection reduces the connectivity of M. Indeed, with-
out the projection in the penalization term (as in the case of the standard IIP method) the set
in @I) would be larger, that is, there will be more non-zero entries in the matrix M. This
fact spoils the M-matrix property, since some of the additional entries have the wrong sign.

Remark 4 In the case of nonconforming meshes the M-matrix property does not hold, in
general. Nevertheless, the numerical experiments presented in Section[5]show that the qual-
ity of the solution is not spoiled by the lack of this property (see remark|[6).
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4 The a posteriori estimation

In this section we introduce the estimator and prove the main result of the paper.

For the sake of simplicity, from now on we are going to assume that £(x) = € constant
on © and g is the restriction to I} of a function in V;, N H'(Q). Furthermore, we assume
that all the integrals involving the right hand side f are exactly computed (as, for instance,
in the case that f is a polynomial).

4.1 The result

Let us introduce the following mesh dependent norm. For v € H'(.7,) we define

Y€
P =1 2v+ Y =TV D1Ge a7

ecbyUdp €

with ¥ > 7 > 0 independent of £ and of €.
Moreover, as in [16], for g € (L?(£2))? we take
Jog-Vvdx

lg]« = sup et (18)
veH&rD(Q)\{O} llvIll

We then define

he
g =1BvE+ Y IV, (19)

ecé&yUép

The bilinear form A defined in @) satisfies the inf-sup condition: there exists C > 0
independent of € such that

inf sup Alu,) >C. (20)
ueHg  (2)\{0} veH] . (2)\{0} ([Mfeelll + [Bul )Vl

This property is proved in [16, Lemma 4.4] for the case I, = d Q. It extends without changes
to our case.

For each element K, we define the local error indicator Nk, as given by the sum of three
contributions

M = N +Nje + N, @1

where the three terms are defined as follows

hi , hi
Mg 1= o |1 = div (@Y Tun) 6 x = ~X |5 - (22)

which is the interior residual term,

1

h
Myimy L llavTull. @)
eCaK\FD

which controls the jump of the approximated flux, and
1 Ye h Ye h
=y L (Eri) iR L (4t u-elhe @b
e e

eCIK\0Q eCIKNIp
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which is the jump of the discrete solution.
The a posteriori error estimator is then defined as

1/2
n:= < Y 711%,(+7712;g +”1/2;g> : (25)
Ke,
We further define the exponentially fitted data approximation term
) 1 2
Ok = g“gvuh*ﬁuh*ahVTuhH(),Kv (26)

and the exponential fitting approximation error by

1
2
0 := (Ze,%) . (27)
K

We shall prove the following result.

Theorem 2 Let u be the solution of (1) and let w; be the solution of (T1). Let the error
estimator M be defined by and the exponential fitting approximation error 0 defined by
@27). Then, we have the a posteriori error bound

[l = unll + [u—unlp < C (1 +6), (28)
with C independent of € and h.

4.2 Approximation Operators

We need to define a conforming approximation for functions in V;,. We recall that we assume
that the family of meshes .7, satisfies the restrictions described in section

We denote by V;© the conforming subspace of V, given by Vi’ =V, ﬂH&FD(Q). Next
result is taken from [11, Theorem 2.1].

Suppose that  is the restriction to I, of a function in V;, NH' (). Then, there exists an
operator Ej, : Vi, — H' () such that for all v € V}, we have Z,v|;, = ¥ and for a constant C

Y vl <€ ( Y he IR+ Y he|v—x|6,e> )

Keg, €€ e€ép
—_ - 2 —
Y Vo= Em)lag < c(Z NG+ XY hel|vx|ae)- (30)
Ke 7, ecd) ecép

We further need the existence of an interpolation operator .#, : H&FD () — V¢ with the
following error estimates: for all v € H&FD (2)

1

2
v =Sl 20 < c( Yy h%(|v,il(,<)7> 31
KE‘%)
[v="Swllm1 @) < Clg o) (32)

Since we are assuming that the mesh .7}, is obtained from a conforming shape regular
mesh by means of a few number of refinements/derefinements together with the local quasi-
uniformity property, we can take as .#, the Scott-Zhang interpolation operator [[17] on the
mentioned conforming mesh.
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4.3 Estimate

Now we are ready for the proof of our main result.

Proof (Proof of Theorem ) As in [9], the key starting point is the decomposition of the
solution u;, into a conforming part plus a remainder. More precisely, given u, solution of the
discrete problem (TT)), we can split it as Zju;, plus a remainder. Denoting u§ = Ejuy, and
denoting the remainder by u},, we have

up = uj, +uj,.
Therefore, we have
([t — unlll+ 1B (e — wn) | < [l — ||+ 1B (e — w) s + [[[oag [I] + | Bua s

First, we notice that [||u} || 4 |Buj |« can be controlled by means of (29) and (30), since
uj, = up — Ejuy, by definition, and by the fact that [[u},]] = [[u;], obtaining

r r € he
12+ 1B < [0+ 1Bl LD e+

ecéy

€ he
L 0405 + 1Bl |l -ele 09

e€ép

Since g is the restriction to I}, of a function in V;, N H' () and because of the construc-
tion of Z;, we have u = uj, = g on Ip and, therefore, u — uj, € H&FD(.Q). So we use the
inf-sup condition lb to obtain for all v € H} 5, (Q)

A(u—us,v)

=l + 1Bl —w)l <€ sup =

vEH(}‘rD (2)\{0}

(34)

Using that u is solution of the continuous problem and uj, = u;, — uj, for v € H(}J—D(Q) we
obtain

A(u—uj,v) = /_vadx—Z/K(SVuZ—ﬁu;;)-Vvdx
T
= /Q fv dx—;/[;(evuh—ﬁuh)-w dx—i-;‘/l.{(sVu,’l—Bu[,)-Vv dx
= /éf(v—fhv) dx—;/K(SVuh—ﬁuh—ahVTuh)~Vvdx

—|—/ f/hvdx—Z/ ahVTuh~Vvdx+Z/(8Vu2—ﬁu2)~Vvdx.
Q T Jk T Jk

Using now the discrete equation (TT), tested against .%,v € H(}‘FD(Q), and taking into ac-
count that the jumps of .#,v on internal and Dirichlet edges vanish, we have

/fﬂhvdx:Z/ apVTuy -V %y dx.
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Hence

A(u—uj,v) = /Qf(vffhv) dfo/K(SVuhfﬁuhfahVTuh)~Vvdx
K
fg/l(ahVTuh«V(vffhv) der;/K(eVuzfﬁuz)'Vv dx.(35)

Let us consider separately each term of the last equation. Using the L?-approximation esti-
mate (3T) for the Scott-Zhang interpolation operator, we can estimate the first term of (33)
as

1/2
B\ ep
<(ZEuR) i (36)
K

From the definition (27) of the exponentially fitted data approximation error, for the second
term of (33) we have

’/Q F(v—F) dx

Z/K(SVuhfﬁuh—ahVTuh)-Vvdx <0 (37)
K

For the third term of (33), integrating by parts, taking into account that a, V;, Tuy, is piecewise
constant, using that H'-functions have vanishing jumps, using a trace inequality to bound
[lv— 2 [2(e) OD edges, and finally using the approximation estimates (1)) and (32)) for the
Scott-Zhang interpolation operator, we have

/ (v—Fpwv)n-a,VTuyds + / [anVTu, ] {v— Fpv}ds
Ty ro

Z/ apVTuy-V(v— ) dx
T Jk

1/2
he

<< )y Sl[[ahVThuh]Hl%,e) vl (38)
ecEHUsn

The fourth term of (35) is controlled thanks to (29) (since u}, = uj, — Zj,up,, by definition)

;/K(SVuzfﬁuZ) Vvdx

1/2 N
|§,e> +|ﬁ|m>< Y llm]

ec&HUép

1/2
Iﬁ,e> vill-— (39)

Collecting (36), (37, (B8) and (39), and using the definition of (23)) of 1 we obtain from

< ( Y o w]

ecépUép ¢

A —uj,v)| < C(n+0)|Iv][].
Therefore, inserting this inequality in (34), we have
([l = uilll + 1B (u —uj) |« <C(n+6)
and, which together with (33) gives
([0 = unll + B (u = un) | <C(n+6).

The proof is then concluded since |u —uy|g < |B (u— up)|« +1.
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5 Numerical experiments

In this section we present some numerical experiments using the a posteriori error estimates
of Theorem 2] as error indicator for an adaptive refinement strategy.

The starting mesh is a non structured shape regular mesh of weakly acute type with 28
elements and 84 degrees of freedom. In the experiments, we construct adaptively refined
sequences of meshes by marking elements for refinement according to the size of the local
indicator {x defined as {2 := nz + 62, where ng and 6k are defined in and (26)), re-
spectively. The refinement fraction is set to 50% and the derefinement fraction is set to 10%.
In each refinement step, we split the triangles which are marked for refinement into four
congruent triangles. In this way the weakly acute property of the initial mesh is conserved
in all the refinement steps.

5.1 Test 1

In this first test we deal with an example for which we know the exact solution, so that
we can study numerically the errors. Consider the equation 1| in the domain Q = (0,1)2
with B = [1, 1], homogeneous Dirichlet boundary condition on 9 and the right hand side

f given by

1 x—1 1 y—1
l4+e e —2"F l4ee—2e¢
f(x7y)—2< te s -+ re s < +2x+2y—2)

l—e¢ 1—e¢

The exact solution is then

1 x—1 1 y—1
l14+e & —2ec l+e e —2ec
(i) = <,+2x_1) (21)

1—e¢

1—e¢

Since the solution, otherwise smooth, presents boundary layers at x = 1 and y = 1, this
test is designed to study the relationship between the estimator { := 1) + 6 and the true
error in dependence on the diffusion parameter €. Figure 2] plots (in log-log scale) the value
of the estimator (labelled as EST), of the energy norm (labelled as T-ERR) against
the squared root of the number of elements, for € = 10~1,1072,1073. As in [16] we also
plot the e-weighted L>-norm £~'/?||u — uy||o o (labelled as L-ERR), which is a bound of
|B (1 —up)|.

We observe that the estimator curve is always above the true error curve, according to
Theorem[2] Moreover, in all cases, the energy norm reaches an order one convergence, while
the norm & '/2||u — uy o reaches an order 2 convergence (orders 1 and 2 are displayed by
the small triangles). In figure d), we further plot, for € = 1073, the energy and L? norms
for an uniformly refined sequence of meshes. As expected, with a comparable number of
elements as in figure [2fc), optimal order of convergence is far to be attained.

Figureshows the ratio between the estimator ¢ and the energy norm, for € = 10~!,1072,1073.
The asymptotic value of the ratio seems not to depend significantly on €, showing the ro-
bustness of the presented estimator with respect to €.
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—6—T-ERR
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(a) € = 107!, adaptivity.

—4—EST
—e—T-ERR
——L-ERR

10’ 10°

(c)e=1073, adaptivity.

Fig. 2 Test 1. The estimator and the true error.
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—e—T-ERR
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(b) £ = 1072, adaptivity.
——T-ERR
——L-ERR
——order 1
10° 10°

(d) € = 103, uniform refinement.

10 10

Fig. 3 Test 1. The ratio ¢ /|||u— uy]||, for € = 1071, 1072,1073.
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Nel = 6543 iter = 17

-1 -05 0 05 1

—o— EST

10 10 10

Fig. 5 Test 2. The total error estimator and its different terms.

5.2 Test 2

We study now a propagation of a boundary discontinuity for € = 10~%. In the domain =
(—1,1)> we take B = [1, 1], f = 0 and I}, = Q. The boundary condition is
_Jlifx=—landy> —%, orify=1and x < %

gxy) = { 0 elsewhere

Figure ] shows the mesh and the solution after 17 refinement steps. We observe that in
a large portion of the domain, far from internal and boundary layers, several triangles have
not been refined. The estimator provides marked elements for the refinement iteration steps
only where needed.

Figure 5| plots the total estimator {, introduced above, and the different terms that con-
tribute to it. In this example, we do not know the exact solution, so we cannot plot the true
error. Observing the different contributions to the estimator, we notice that the term 6 (de-
fined by (7)) that in principle could be considered as a data approximation error term, due
to the exponential fitting, cannot be neglected in the indicator in the actual implementation
of the adaptive strategy. Indeed, it is of the same order of the total estimator.
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Nel = 7160 iter = 20

Fig. 6 Test 3. Mesh and solution after 20 refinements.

5.3 Test 3

Now we explore the case of a rotating flow transporting a boundary sharp profile. In the
domain = (—1,1) x (0,1) we consider

B= (Zy(l—)cz),—Zx(l—yz))7 f=0.

The Dirichlet boundary condition is taken as

[ 1+4+tanh(10(2x+1)) ifx<Oandy =0
glx,y) = { 0 elsewhere
In this case, we approximate the vector  on each element K by its value in the barycen-
ter, which we denote by (B4, 82), and we define the piecewise linear function ¥ on K as

II]K(x7y) = BII(X+ BI%y

Figure [6] shows the mesh and the solution after 20 refinement steps. We observe that
most elements are within the boundary layer, close to the singularity in the origin and where
the solution exhibits the steepest behavior.

Figure[7]plots the total estimator ¢, and the different terms that contribute to it. We point
out that here the field 8 is approximated and this fact is taken care of in the exponential
fitting data approximation error term 6. However, its effect on the overall indicator is not
predominant, as shown in figure [/| Moreover, this is also confirmed by the quality of the
mesh in figure [f] where the stronger refinement takes place in correspondence to the worse
behavior of the solution.

Remark 5 The adaptive algorithm is initialized on a weakly acute conforming mesh, there-
fore, thanks to the M-matrix property the initial solution is non negative and it does not
exhibits spurious oscillations. Instead, in the successive refinement steps, the M-matrix prop-
erty does not hold, since the inverse of the matrix is not positive. Nevertheless, the quality
of the solution is not spoiled. For test 2, in Figure[z_l] we observe that the solution conserves
the positivity and does not have spurious oscillations. For test 3, the solution in Figure [§]
presents only very small wiggles.
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10 10
Fig. 7 Test 3. The total error estimator and its different terms.

6 Appendix

The ITPGO method is a weakly penalized method and it has been analyzed in [6] for a
pure diffusive linear problem, in the case of conforming meshes. Other weakly penalized
methods were studied for example in [2,3./8]. In this section we show very briefly that the
standard analysis covers also the case of meshes with hanging nodes, which is the case we
have considered in this paper.

For simplicity we discuss the problem

—Au=f in Q (40)
u=20 on Q2

assuming f € L*() and Q being a Lipschitz convex polygon. Then we know that u €
H*(Q).

Let 7}, be a triangulation of  satisfying the restrictions described in Section[2] allowing
for hanging nodes, with 7 = max{hx : K € J},}. We introduce the bilinear form

Bu(w,v) ::/QV;,W-thdx—/F{Vhw}- v ds+/1_,u[[th]] [T ds,

where I, is defined in and the penalization function u is given by

with y large enough.
Then, recalling the discrete space V}, defined in (6), the IPGO method reads: find u;, € V,
such that

Bh(uh,v):/ﬂfvdx Yv e V,. 41)

Consider the norm and seminorm

1 1
VI = Wlin+ Y 5 Ty Be: M=) L

ecl ¢ ece e

[Tullse, — veH'(Z).
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The coercivity of the bilinear form By, on V},, as in the case of conforming meshes [1], follows
from the inequality

/F{th} V] ds < Colvlelvhin  WeE Vi,

where the constant Cy,, depending on the shape regularity of the mesh, is given by

Csr:\/imax{ | ‘e[ :T € %,eedgeofT}.

T|2

Then, if on all the edges we have

. 1 C?
7’2707 with YOZ§+%a

taking into account the definition of Bj, and using the arithmetic-geometric inequality, we
can prove

Bis) 2 WP eV @)
It follows that problem (I} has a unique solution uy,.

As a consequence of our definition of the projection operator I, we have that for con-
tinuous functions u € H?(2) N H{ (L), the jumps [IT,u]l|. on edges e € & vanish, even
when the edge e is not entire but part of an edge of some element as in the presence of
hanging nodes. From this fact we easily obtain the consistency of the method, that is, if u is
the solution of (0} then

Bj(u,v) = /vadx v € V).

The next approximation error estimate can then be proved following standard arguments.
We include a sketch of the proof for completeness.

Theorem 3 There exists a constant C, independent of h, such that
[l — un|| < Chluls.

Proof We can use a classical argument. Let u; be the possibly discontinuous function de-
fined on each element K € .7}, as the linear Lagrange interpolation of u|k. It can be checked
that

lu — wr]|| < Chluls. (43)

On the other hand, using the coercivity and consistency properties we have
Cllfun = urll* < Bl — g, un, — ur)
= By(u—uy,uy —uy).
Moreover, it can be proved that
By (u—up,up — up) < Chlula||up — ur]l,

which gives us
[z, — uz||| < Chluls. (44)

Inequalities and conclude the proof.
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