Tópicos Avanzados de Optimización Combinatoria y Teoría de Grafos

Docentes: Graciela Nasini, Daniel Severin, Pablo Torres

Trabajos Prácticos

Caminos y ciclos con pares prohibidos

Para un grafo o digrafo dado, cuyo conjunto de vértices es V, decimos que una colección de pares prohibidos es un subconjunto \mathcal{T} de $\{(u,v) \in V \times V : u \neq v\}$, y decimos que un conjunto $S \subset V$ (que puede definir una estructura como caminos o ciclos) es \mathcal{T} -admisible cuando contiene a lo sumo un vértice de cada par prohibido (es decir, no se puede dar que $u \in S$ y $v \in S$ al mismo tiempo, para todo (u,v) de \mathcal{T}). Considere los siguientes 3 problemas:

Problema del camino dirigido con pares prohibidos (DPFP)

Entrada: un digrafo D=(V,A), vértices $s,t\in V$ tales que existe un st-camino

dirigido en D, y una colección de pares prohibidos \mathcal{T} .

Pregunta: ¿existe un st-camino dirigido de D \mathscr{T} -admisible?

Problema del camino no dirigido con pares prohibidos (UPFP)

Entrada: un grafo G = (V, E), vértices $s, t \in V$ tales que existe un st-camino en G,

y una colección de pares prohibidos \mathcal{T} .

Pregunta: ¿existe un st-camino de G \mathscr{T} -admisible?

Problema del ciclo impar con pares prohibidos (OCFP)

Entrada: un grafo G=(V,E) y una colección de pares prohibidos $\mathscr{T}.$

Pregunta: ¿existe un ciclo impar sin cuerdas (también denominado $agujero\ impar$) \mathscr{T} -admisible?

Sabiendo que DPFP es \mathcal{NP} -completo, demuestre que UPFP y OCFP son \mathcal{NP} -completos también. Para ello, reduzca polinomialmente DPFP a UPFP y luego UPFP a OCFP (Sugerencia: ver [EDGE, pág. 58]).

Bibligrafía:

[EDGE] M. P. Dobson, V. Leoni, G. Nasini. A characterization of edge-perfect graphs and the complexity of recognizing some combinatorial optimization games. Discr. Optim. 10 (2013) 54–60.

Coloreos aditivos orientados

Dado un digrafo D = (V, A), un k-coloreo aditivo orientado de D es una asignación $f: V \to \{1, \ldots, k\}$ tal que, para todo arco $(u, v) \in A$, la suma de los valores asignados por f a los vecinos de u es inferior a la suma de los valores asignados a los vecinos de v, es decir, si $N(v) = N^+(v) \cup N^-(v)$, para todo $(u, v) \in A$ se verifica

$$\sum_{w \in N(u)} f(w) < \sum_{w \in N(v)} f(w).$$

Dado $k \geq 1$, definimos el siguiente problema:

Problema del k-coloreo aditivo orientado (PkCAO)

Entrada: un digrafo D = (V, A).

Pregunta: ¿existe un k-coloreo aditivo orientado de D?

- 1. Pruebe que si D tiene un circuito dirigido, entonces D no tiene k-coloreo aditivo orientado para ningún k.
- 2. Demuestre que el siguiente digrafo, a pesar de ser acíclico, no tiene un k-coloreo aditivo orientado para ningún k.



- 3. Pruebe que D = (V, A) tiene un 1-coloreo aditivo orientado si y sólo si para todo $(u, v) \in A$, d(u) < d(v) (donde d(v) es el grado de v).
- 4. Pruebe $PnCAO \in \mathcal{P}$ en Digrafos Completos de n vértices.

Observación: un digrafo se dice completo si su grafo subyacente es completo.

5. Dada $\Phi \in B_3$ una instancia de 3-SAT* con cláusulas $C = \{c_1, \ldots, c_p\}$ y variables $X = \{x_1, \ldots, x_q\}$, construímos el digrafo $D(\Phi)$ de la siguiente manera: por cada cláusula $c_j \in C$ construir el digrafo A_j y por cada variable $x_i \in X$ construir el digrafo R_i (ver ambos en la siguiente página). Luego, para cada cláusula $c_j = y \lor z \lor w$ con $y, z, w \in B_1$, agregar los arcos $(c_j, y), (c_j, z), (c_j, w)$.

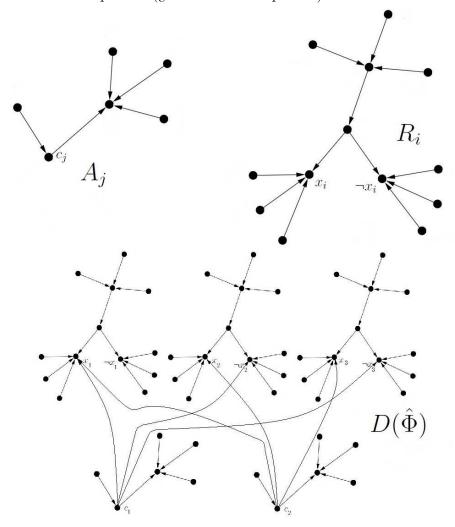
En la figura también se muestra, a modo de ejemplo, $D(\hat{\Phi})$, donde $\hat{\Phi} = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_3)$.

- a) Demuestre que si $D(\Phi)$ admite un 2-coloreo aditivo orientado f entonces
 - 1) $f(x_i) + f(\neg x_i) \ge 3$, para todo $x_i \in X$.
 - 2) $f(y) + f(z) + f(w) \le 5$, para todo $c_i = y \lor z \lor w \in C$.
- b) Demuestre que si Φ es satisfactible, $D(\Phi)$ admite un 2-coloreo aditivo orientado. Sugerencia: Utilice la transformación de 3-SAT* a P2CAO definida a partir de la construcción D. Considere que una variable x_j es verdadera cuando $f(x_j) = 1$ y falsa cuando $f(\neg x_j) = 1$. En el caso en que $f(x_j) = f(\neg x_j) = 2$ considere que la variable puede asumir cualquier valor de verdad.

2

c) Utilice los resultados de (a) y (b) para probar que P2CAO en Digrafos Bipartitos es \mathcal{NP} -completo.

Sugerencia: Para probar la bipartición del grafo subyacente de $D(\Phi)$, pruebe primero que si H(G) son los vértices de grado 1 de un grafo G dado, entonces: G - H(G) bipartito $\implies G$ bipartito (¿es válida la recíproca?)



6. [Opcional] Se sabe que el siguiente problema es polinomial:

Problema de factibilidad de un sistema de desigualdades lineales (PFSDL)

Entrada: una matríz $A \in \mathbb{R}^{m \times n}$ y un vector $b \in \mathbb{R}^m$.

Pregunta: ¿existe una solución $x \in \mathbb{R}^n$ tal que $Ax \leq b$?

Consideremos el siguiente problema:

Problema de la existencia de coloreo aditivo orientado (PECAO)

Entrada: un digrafo D = (V, A).

Pregunta: ¿existe un k-coloreo aditivo orientado de D para algún k?

Pruebe que PECAO puede reducirse polinomialmente a PFSDL y, por ende, PECAO
e $\mathcal{P}.$ Bibligrafía:

[COLAD] J. Marenco, M. Mydlarz, D. Severin. *Topological Additive Numbering of Directed Acyclic Graphs*. Manuscript.