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Abstract

An additive labeling of a graph G is a function ¢ : V(G) — N, such that for every
two adjacent vertices v and u of G, >, l(w) # > . ¢(w) (z ~y means that x is
joined to y). An additive number of G, denoted by n(G), is the minimum number k
such that G has a additive labeling ¢ : V(G) — {1,...,k}. An additive choosability
number of a graph G, denoted by 17¢(G), is the smallest number k such that G has an
additive labeling from any assignment of lists of size k to the vertices of G.

Seamone (2012) [21] conjectured that for every graph G, n(G) = n:(G). We give
a negative answer to this conjecture and we show that for every k there is a graph G
such that 7,(G) — n(G) > k.

A (0, 1)-additive labeling of a graph G is a function £ : V(G) — {0,1}, such that
for every two adjacent vertices v and uw of G, Y, l(w) # >, . ¢(w). A graph may
lack any (0, 1)-additive labeling. We show that it is NP-complete to decide whether
a (0, 1)-additive labeling exists for some families of graphs such as planar triangle-free
graphs and perfect graphs. For a graph G with some (0,1)-additive labelings, the
(0, 1)-additive number of G is defined as 11 (G) = minger Y-, cy () €(v) where I is the
set of (0, 1)-additive labelings of G. We prove that given a planar graph that contains a
(0, 1)-additive labeling, for all £ > 0, approximating the (0, 1)-additive number within
n'~¢ is NP-hard.
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1 Introduction

An additive labeling of a graph G which was introduced by Czerwinski et al. [9], is
a function ¢ : V(G) — N, such that for every two adjacent vertices v and u of G,
Y Lw) # >, l(w) (x ~ y means that x is joined to y). An additive number
of G, denoted by n(G), is the minimum number &k such that G has a additive labeling
¢:V(G) — {1,...,k}. Initially, additive labeling is called a lucky labeling of G. The
following important conjecture is proposed by Czerwinski et al. [9].

Conjecture 1 [ Additive Coloring Conjecture [9]] For every graph G, n(G) < x(G).

Crzerwiniski et al. also, considered the list version of above problem [9]. An additive
choosability number of a graph G, denoted by 7,(G), is the smallest number & such that
G has an additive labeling from any assignment of lists of size k to the vertices of G.
Czerwiniski et al. [9] proved that if T is a tree, then n,(T") < 2, and if G is a bipartite planar
graph, then 7,(G) < 3. Seamone in his Ph.D dissertation posed the following conjecture
about the relationship between additive number and additive choosability number [20, 21].

Conjecture 2 [Additive List Coloring Conjecture [20, 21]] For every graph G,
n(G) = ne(G).

For a given connected graph G with at least two vertices, if no two adjacent vertices
have the same degree, then 1n(G) =1 and 7,(G) > 1. We show that not only there exists
a counterexample for the above equality but also the difference between 7(G) and 7,(G)
can be arbitrary large.

Theorem 1 For every k there is a graph G such that n(G) < k < ny(G)/2.

Chartrand et al. introduced another version of additive labeling and called it sigma
coloring [3]. For a graph G, let ¢ : V(G) — N be a vertex labeling of G. If for every two
adjacent vertices v and u of G, >, ., c(w) # >, c(w), then ¢ is called a sigma coloring
of G. The minimum number of labels required in a sigma coloring is called the sigma
chromatic number of G and is denoted by o(G). Chartrand et al. proved that, for every
graph G, o(G) < x(G) [).

Theorem A [3] For every graph G, o(G) < x(G).



Additive labeling and sigma coloring have been studied extensively by several authors,
for instance see [3, 4, 7, 8, 9, 11, 14, 19]. It is proved, in [3] that it is NP-complete to
determine whether a given graph G has n(G) = k for any k > 2. Also, it was shown that,
it is NP-complete to decide for a given planar 3-colorable graph G, whether n(G) = 2 [3].
Furthermore, it was proved that, it is NP-complete to decide for a given 3-regular graph
G, whether n(G) =2 [11].

The edge version of additive labeling was introduced by Karonski, Luczak and Thoma-
son [16]. They introduced an edge-labeling which is additive vertex-coloring that means
for every edge uv, the sum of labels of the edges incident to wu is different from the sum
of labels of the edges incident to v [16]. It is conjectured that three integer labels {1, 2, 3}
are sufficient for every connected graph, except Kj [16]. Currently the best bound is
5 [15]. This labeling has been studied extensively by several authors, for instance see
[1, 2, 5, 17, 18).

A clique in a graph G = (V, E) is a subset of its vertices such that every two vertices in
the subset are connected by an edge. The clique number w(G) of a graph G is the number
of vertices in a maximum clique in G. There is no direct relationship between the additive
number and the clique number of graphs. For any natural number n there exists a graph
G, such that w(G) = n and n(G) = 1. To see this for given number n, consider a graph G
with the set of vertices V(G) = {v;|1 <i <n}U{u; ;|1 <j <i<n} and the set of edges
BE(G) = {vivjli # j} U{viug |1 <j <i<n}.

Theorem 2 We have the following:
(i) For every graph G, n(G) > ==

(ii) If G is a regular graph and w > "TH, then n(G) > 3.

A (0,1)-additive labeling of a graph G is a function ¢ : V(G) — {0, 1}, such that for
every two adjacent vertices v and u of G, Y, l(w) # >, ¢l(w). A graph may lack
any (0, 1)-additive labeling. It was proved that, it is NP-complete to decide for a given
3-regular graph G, whether n(G) = 2 [11]. So, it is NP-complete to decide whether a
(0, 1)-additive labeling exists for a given 3-regular graph G. In this paper, we study the
computational complexity of (0, 1)-additive labeling for planar graphs. We show that it is
NP-complete to decide whether a (0, 1)-additive labeling exists for some families of graphs
such as planar triangle-free graphs.

Theorem 3 It is NP-complete to determine whether a given a planar triangle-free graph
G has a (0,1)-additive labeling?



For a graph G with some (0, 1)-additive labelings, the (0, 1)-additive number of G is
defined as m(G) = minger >,y () ¢(v) where I' is the set of (0,1)-additive labelings of
G. For a given graph G with a (0, 1)-additive labeling ¢ the function 1+ 3_ ¢y ¢(v) is
a proper vertex coloring, so we have the following trivial lower bound for 7;(G).

X(G) =1 =m(G).

We prove that given a planar graph that contains a (0, 1)-additive labeling, for all
¢ > 0, approximating the (0, 1)-additive number within n!~¢ is NP-hard.
Theorem 4 If P # NP, then for any constant € > 0, there is no polynomial-time n'~¢-
approzimation algorithm for finding m (G) for a given planar graph with at least one (0,1)-
additive labeling.

A graph G is called perfect if w(H) = x(H) for every induced subgraph H of G.
Finally, we show that it is NP-complete to decide whether a (0, 1)-additive labeling exists
for perfect graphs.

Theorem 5 The following problem is NP-complete: Given a perfect graph G, does G
have any (0, 1)-additive labeling?

For v € V(G) we denote by N(v) the set of neighbors of v in G. Also, for every
v € V(G), the degree of v is denoted by d(v). We follow [13, 22] for terminology and
notation not defined here, and we consider finite undirected simple graphs G = (V, E).

2 Counterexample

Proof of Theorem 1. For every k we construct a graph G such that n7,(G) —n(G) > k.
For every a, 1 < a < 2k — 1 consider a copy of complete graph Ké:), with the vertices
{zg:1<B<k}U{yg:1<pB <k} Next, consider an isolated vertex ¢ and join every
vertex y3 to ¢, Call the resulting graph G. First, note that in every additive labeling ¢ of
G, for every 1 < i < j < k we have ZZGN(%;)E(Z) # zzeN(m})ﬁ(z), thus ¢(z}) # E(a;;)
(because all the neighbors of x} and :17} are common except x; as a neighbor of :E}, and
vice versa). Therefore ¢(z}),€(x3),...,¢(z}) are k distinct numbers, that means 1(G) > k.
Define:

0 V(G) = {1,2,..., 2k},



U(zg) = L(y§) = B, for every a and B,
0(t) = k.

It is easy to see that ¢ is an additive labeling for G. Next, we show that ny(G) > 2k —1.
Consider the following lists for the vertices of G.

L(zg) ={1,2,3,...,2k — 1} , for every a and 3,
Lyg) ={1+a,2+a,3+a,...,2k — 1+ a}, for every a and S,
L(t) ={1,2,3,...,2k — 1}.

To the contrary suppose that 7,(G) < 2k — 1 and let ¢ be an additive labeling from
)

the above lists. Suppose that ¢(t) = r. Consider the complete graph KQ(Z , we have:
L(xg) ={1,2,3,...,2k -1}, 1 < B <k,
Ly ={l+r2+r3+r.. . 2k—1+r},1<B <k

Now, consider the following partition for {1,2,3,...,2k—1}U{l+r,247r,3+r,... ,2k—
14},

{1+nr1},{2+n2},...,{2k—1+72k—1}

By Pigeonhole Principle, there are indices i, n and m such that £(z],), {(y;,) € {i+7r,i},
so {(zy,) =i and €(yy) = i+ r. Therefore, 3 cyer)l(2) = > cn(yr) l(2). This is a
contradiction, so n,(G) > 2k.

U
3 Lower bounds
Proof of Theorem 2. (i) Let ¢: V(G) — {1,...,k} be an additive labeling of G and

suppose that T' = {vy,...,v,} is a maximum clique in G. For each vertex v € T, define
the function Y,,.

Y, ¥ S v 1) — 1(v).

T~

For every two adjacent vertices v and w in T', we have:

2w U(@) # 2 p 1),



> aer l(z) + Ziif Uz) # Y wgr ) + D wer (),

T~ U TH#U

Ser ) +1(u) # D aer l(x) + 1(v),

T~ T~U

Y, # Y.

Thus, Y,,,...,Y,, are distinct numbers. On the other hand, for each vertex v € T', the
domain of the function Y, is [k, k(n —w) —1]. So w < k(n—w+1), therefore k > —r-—
and the proof is completed.

(ii) Let G be a regular graph, obviously n(G) > 2. To the contrary suppose that
n(G) = 2. Let T be a maximum clique in G and ¢ : V(G) — {1,2} be an additive labeling

of G. Define:

Xy =c(1)NT, Xo=c1(2)NT,
Y1 =c Y1)\ T, Yo =c1(2)\T.

Suppose that X; = {v1,...,vx} and Xo = {vky1,...,0,}. For each 1 < i < w,
denote the number of neighbors of v;, in Y7 by d;. Since ¢ is an additive labeling of the
regular graph, so every two adjacent vertices have different numbers of neighbors in ¢=*(1).
Therefore dy,...,dg, 1 + dg41,...,1 + d, are distinct numbers. Since for each 1 <7 < w,
0 < d; < |Y1|, we have |Y1| > w — 2. Similarly, |Y2| > w — 2, so

n=|T|+ V1| + |Ya| > 3w — 4.

This is a contradiction. So the proof is completed.

4 Planar graphs

Proof of Theorem 3. Let ® be a 3-SAT formula with the set of clauses C' and the set
of variables X. Let G(®) be a graph with the vertices C'U X U (=X), where =X = {-x :
x € X}, such that for each clause ¢ = yVzVw, cis adjacent to y, z and w, also every x € X
is adjacent to —x. ® is called planar 3-SAT(type 2) formula if G(®) is a planar graph. It
was shown that the problem of satisfiability of planar 3-SAT (type 2) is NP-complete [12].
In order to prove our theorem, we reduce the following problem to our problem.

Problem: Planar 3-SAT (type 2).
INPUT: A 3-SAT(type 2) formula ®.



QUESTION: Is there a truth assignment for ® that satisfies all the clauses?

Consider an instance of planar 3-SAT (type 2) with the set of variables X and the set
of clauses C. We transform this into a graph G'(®) such that G'(®) has a (0, 1)-additive
labeling, if and only if ® is satisfiable. The graph G’(®) has a copy of B(z) for each variable
x and a copy of A(c) for each clause c¢. B(x) and A(c) are shown in Figure 1. Also, for
every ¢ € C, v € X, the edge w'lz is added if ¢ contains the literal x. Furthermore, for
every ¢ € O, -z € =X, the edge w!—x is added if ¢ contains the literal —z. Call the
resulting graph G’(®). Clearly G'(®) is triangle-free and planar.

We
W2 w3
We Wl
A(C) B(x)

Figure 1: The two auxiliary graphs A(c) and B(x).

Fact 1 Let £ be a (0,1)-additive labeling for G'(®), for each clause ¢ = a VbV ¢, l(a) +
0(b) + £(c) > 1.

Proof of Fact 1. To the contrary suppose that there exists a clause ¢ = a VbV ¢,
such that £(a) + €(b) + €(c) = 0, then 3¢ v,y €(t) = {(w?) + £(w?). Consider the odd
cycle wlw?wiwdw3, but an odd cycle does not have any (0, 1)-additive labeling, this is a

contradiction. &

Fact 2 Let G'(®) be a graph with a (0, 1)-additive labeling ¢, for each variable x, ¢(x) +
(—x) < 1.

Proof of Fact 2. To the contrary, suppose that there is a variable x, such that

{(z)+£(—x) = 2. Consider the auxiliary graph B(z). Because of the odd cycle yly2yiydys,

/(%) = 1. Now two cases for £(y>) can be considered.



Case 1. {(y2) = 1. Thus D ten(ys) L(t) = 3, therefore 3o n(ysy £(2) € {1,2}.

o If ZtEN(yg) ( ) =1, then E(ym) - E(ym) =0. Thus E(ym) +€(ym) =
generality suppose that £(y!) = 1 and £(y2) = 0, in this case Doten(2) L) = 2ien() 1),
but this is a contradiction.

1; without loss of

o If 3" e n(y) £(t) = 2. Suppose that ((y3) =1, £(y%) = 0. Four subcases for £(yl), £(y2)
can be considered, each of them produces a contradiction.

Case 2. {(y2) = 0. Thus D ten(ys) L(t) = 2, therefore 3, v, sy £(t) € {1,3}.
1.

o If ey U(t) = 1, 50 0(y2) = L(y}) = 0. Therefore, £(yl)+£(y2) = 1. With no loss

of generality suppose that £(yl) = 1, £(y2) = 0, therefore 2ten(s) L) = Dienys) 1),
but this is a contradiction.

o If 35 o) Ut) = 3, s0 L(y3) + €(yz) = 2. So L(y;) + £(y3) = 1. Suppose that
((yl) =1, £(y2) = 0, therefore Doten() Ut) = Xten(ys) £(1), this is a contradiction. &

First, suppose that @ is satisfiable with the satisfying assignment I' : X — {true, false}.
We present a (0, 1)-additive labeling ¢ for G'(®); for every variable z if I'(z) = true, then
put £(z) = 1, otherwise put £(—z) = 1. Also put £(z1) = ---£(z10) = L(y}) = £(y3) =
Ly = 0(y2) = £(y8) = 1. Moreover, for every clause ¢, put £(w}) = £(w?) = f(w?) =
f(wd) = 1. Tt is easy to extend this labeling to a (0,1)-additive labeling for G’(®).
Next, suppose that G'(®) has a (0, 1)-additive labeling ¢. For each variable x, by Fact 2,
lz) +4(—z) < 1. If L(z) = 1, put I'(x) = true, if £(—z) = 1, then put I'(z) = false and
otherwise put I'(x) = true. By Fact 1, I' is a satisfying assignment for ®. O

5 Inapproximability

Proof of Theorem 4. Let ¢ > 0 and k be a sufficiently large number. It was shown
that 3-colorability of 4-regular planar graphs is NP-complete [10]. We reduce this problem
to our problem, in more details for a given 4-regular planar graph G with k vertices, we
construct a planar graph G* with 7k + 10k[21+2 vertices, such that if x(G) < 3, then
n (G*) < 5k, otherwise 1, (G*) > 5/<;(%]+1, therefore there is no #-approximation algorithm
for determining 7, (G*) for planar graphs, where:



_ Approximate Answer - 52141

o= OPT 5k

_ kf%]
Ed

— (k(§1+3)r§1+3
X 31

> (7k + 10k 1+2) T2
El

> |V(GT)|TET+e

> V(G

In order to construct G*, we use the auxiliary graphs D(v) which is shown in Figure 2.
Using simple local replacements, for every vertex v of G, put a copy of D(v), and for every
edge vu of G, join the vertex v of D(v) to the vertex u of D(v). Call the resulting graph G*.
First, suppose that G is not 3-colorable and let £ be a (0, 1)-additive labeling for G*. By the
structure of D(v) we have £(v) = 1 and £(p3) = 0,80 3¢ () €(z) = 44-L(pa) +L(ps)+L(ps)-
Since G is not 3-colorable, so there exists a vertex v such that ) N) ¢(x) = 3, therefore
in the subgraph D(v), ¢(p4) + £(ps) + £(ps) = 0, so £(p5) = 0. Consequently for every i,
1 <¢ < d, in the subgraph D(v), ¢(v;) + £(v}) > 1. So m(G*) > 5E[21+L, Next, suppose
that x(G) < 3. So G has a proper vertex coloring ¢ : V(G) — {1,2,3}. For every vertex
vof G, if c(v) =1 put £(ps) = l(ps) = 0 and ¢(p5) = 1, else if ¢(v) = 2 let £(ps) = 0 and
U(ps) = L(ps) = 1 and if c(v) = 3 let £(ps) = £(ps) = £(ps) = 1. It is easy to extend ¢ to a
(0, 1)-additive labeling for G* such that 7, (G*) < 5k.

Figure 2: The auxiliary graph D(v). This graph has 7 + 10k 21+1 vertices, where d =
B2+



6 List Coloring Problem

Proof of Theorem 5. Let G be a graph and let L be a function which assigns to each
vertex v of G a set L(v) of positive integers, called the list of v. A proper vertex coloring
¢:V(G) — Nsuch that f(v) € L(v) for all v € V is called a list coloring of G with respect
to L, or an L-coloring, and we say that G is L-colorable.

In the next, for a given graph G and a list L(v) for every vertex v, we construct a
graph Hg such that Hg has a (0, 1)-additive labeling if and only if G is L-colorable.

Define W = Uvev(G) L(v) and let f be a bijective function from the set W to the
set {2,3,---,|W|+ 1}. For every vertex v € V(G), let Ly(v) = {f(i)|i € L(v)}. G is
L-colorable if and only if G is L-colorable. Now, we construct Hg form G and Ly.

Construction of Hg. We use three auxiliary graphs T'(w), I(j) and G(v, L¢(v),s).
T(w) and I(j) are shown in Figure 3. Consider a vertex v and a copy of auxiliary graph
T'(w). Join v to T'(w). Next, for every j € {2,...,s}\ L¢(v) consider a copy of I(j) and
join v to u;. Finally, put s isolated vertices and join each of them to v. Call the resulting
graph G(v, L¢(v),s). Now, for every vertex v € V(G) put a copy of G(v, L¢(v),|W|+ 1)
and for every edge vv’ in G join v € V(G(v, Lf(v), [W|+1) tov' € V(G(', L¢(V'), [W|+1).
Call the resulted graph Hg.

For a family .7 of graphs, define: %’ ey {Hg|G € ZF}. We show that if . is a
family of graphs such that list coloring problem is NP-complete over that family. Then,
the following problem is NP-complete: ”Given a graph Hg € %', does Hg have a (0,1)-
additive labeling?

X
\'% W x
o
X4
Y.
¥ v
% Vi

1G) T(w)

Figure 3: The auxiliary graphs I(j) and T'(w).
First consider the following fact.
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Fact 3 Let G be a graph with a (0, 1)-additive labeling ¢ and have the auxiliary graph
T'(w) as a subgraph, £(v) =0, {(w) =1 and }_, .y, {(2) = 1.

Proof of Fact 3. By attention to the two triangles zjzox3 and yiy2ys, f(w) = 1
and £(y4) = 1. Also £(z1) # £(z2), without loss of generality suppose that ¢(x1) = 1 and
{(z2) = 0. Therefore, {(x3) = 0, thus 3 ¢ n () (@) =1+ £(v). Since 3, cn(y,) H(T) =2,

therefore > .y, {(z) =1, consequently £(v) =0. &

Fact 4 Let G be a graph with a (0, 1)-additive labeling ¢ and have the auxiliary graph
I(j) as a subgraph, erN(uj) lx) >

Proof of Fact 4. By Fact 3, f(w) = 1, while using similar arguments ¢(z;) = --- =
U(zj-1) = 1. 50 3 penquy) () 2 5.

Fact 5 Let £ be a (0,1)-additive labeling for G(v, Ly(v),[W|+ 1), > cn(w €(x) € Ly(v).

Proof of Fact 5. By Fact 3 and Fact 4 it is clear.

First, suppose that Hg has a (0, 1)-additive labeling ¢, define ¢ : V(G) = N, ¢(v) =
> zen() {(z). cis aproper vertex coloring and for every vertex v, by Fact 5, c(v) € Lg(v).
Next, suppose that G is Ls-colorable, then clearly, Hg has a (0,1)-additive labeling.

The list coloring problem is NP-complete for perfect graphs and planar graphs (see
[6]). Obviously if G is a planar graph, then H¢ is a planar graph. Also, if G is a perfect
graph, then it is easy to see that Hg is a perfect graph. This completes the proof.

O

7 Concluding remarks

In this paper we study the computational complexity of (0, 1)-additive labeling of graphs.
A (0,1)-additive labeling of a graph G is a function ¢ : V(G) — {0,1}, such that for
every two adjacent vertices v and u of G, >, l(w) # >, ., ¢(w). We can consider
another version of this problem that we call it proper total dominating set. The proper
total dominating set of a graph G = (V, E), that is a subset D of V such that every vertex
has a neighbor in D (all vertices in the graph including the vertices in the dominating set
have at least one neighbor in the dominating set) and every two adjacent vertices have a
different number of neighbors in D.
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