The Inapproximability for the (0,1)-additive number

Arash. Ahadia ${ }^{\text {a }}$ Ali. Dehghan ${ }^{\text {b }}$,
${ }^{\text {a }}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran *

Abstract

An additive labeling of a graph G is a function $\ell: V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices v and u of $G, \sum_{w \sim v} \ell(w) \neq \sum_{w \sim u} \ell(w)(x \sim y$ means that x is joined to y). An additive number of G, denoted by $\eta(G)$, is the minimum number k such that G has a additive labeling $\ell: V(G) \rightarrow\{1, \ldots, k\}$. An additive choosability number of a graph G, denoted by $\eta_{\ell}(G)$, is the smallest number k such that G has an additive labeling from any assignment of lists of size k to the vertices of G.

Seamone (2012) [21] conjectured that for every graph $G, \eta(G)=\eta_{\ell}(G)$. We give a negative answer to this conjecture and we show that for every k there is a graph G such that $\eta_{\ell}(G)-\eta(G) \geq k$.

A $(0,1)$-additive labeling of a graph G is a function $\ell: V(G) \rightarrow\{0,1\}$, such that for every two adjacent vertices v and u of $G, \sum_{w \sim v} \ell(w) \neq \sum_{w \sim u} \ell(w)$. A graph may lack any $(0,1)$-additive labeling. We show that it is NP-complete to decide whether a $(0,1)$-additive labeling exists for some families of graphs such as planar triangle-free graphs and perfect graphs. For a graph G with some $(0,1)$-additive labelings, the $(0,1)$-additive number of G is defined as $\eta_{1}(G)=\min _{\ell \in \Gamma} \sum_{v \in V(G)} \ell(v)$ where Γ is the set of $(0,1)$-additive labelings of G. We prove that given a planar graph that contains a $(0,1)$-additive labeling, for all $\varepsilon>0$, approximating the $(0,1)$-additive number within $n^{1-\varepsilon}$ is NP-hard.

Key words: Additive labeling; additive number; lucky number; $(0,1)$-additive labeling; (0,1)-additive number; Computational complexity.
Subject classification: 05C15, 05C20, 68Q25

[^0]
1 Introduction

An additive labeling of a graph G which was introduced by Czerwiński et al. [9], is a function $\ell: V(G) \rightarrow \mathbb{N}$, such that for every two adjacent vertices v and u of G, $\sum_{w \sim v} \ell(w) \neq \sum_{w \sim u} \ell(w)(x \sim y$ means that x is joined to $y)$. An additive number of G, denoted by $\eta(G)$, is the minimum number k such that G has a additive labeling $\ell: V(G) \rightarrow\{1, \ldots, k\}$. Initially, additive labeling is called a lucky labeling of G. The following important conjecture is proposed by Czerwiński et al. [9].

Conjecture 1 [Additive Coloring Conjecture [9]] For every graph G, $\eta(G) \leq \chi(G)$.

Czerwiński et al. also, considered the list version of above problem [9]. An additive choosability number of a graph G, denoted by $\eta_{\ell}(G)$, is the smallest number k such that G has an additive labeling from any assignment of lists of size k to the vertices of G. Czerwiński et al. [9] proved that if T is a tree, then $\eta_{\ell}(T) \leq 2$, and if G is a bipartite planar graph, then $\eta_{\ell}(G) \leq 3$. Seamone in his Ph.D dissertation posed the following conjecture about the relationship between additive number and additive choosability number [20, 21].

Conjecture 2 [Additive List Coloring Conjecture [20, 21]] For every graph G, $\eta(G)=\eta_{\ell}(G)$.

For a given connected graph G with at least two vertices, if no two adjacent vertices have the same degree, then $\eta(G)=1$ and $\eta_{\ell}(G)>1$. We show that not only there exists a counterexample for the above equality but also the difference between $\eta(G)$ and $\eta_{\ell}(G)$ can be arbitrary large.

Theorem 1 For every k there is a graph G such that $\eta(G) \leq k \leq \eta_{\ell}(G) / 2$.

Chartrand et al. introduced another version of additive labeling and called it sigma coloring [8]. For a graph G, let $c: V(G) \rightarrow \mathbb{N}$ be a vertex labeling of G. If for every two adjacent vertices v and u of $G, \sum_{w \sim v} c(w) \neq \sum_{w \sim u} c(w)$, then c is called a sigma coloring of G. The minimum number of labels required in a sigma coloring is called the sigma chromatic number of G and is denoted by $\sigma(G)$. Chartrand et al. proved that, for every graph $G, \sigma(G) \leq \chi(G)[8]$.

Theorem A [8] For every graph $G, \sigma(G) \leq \chi(G)$.

Additive labeling and sigma coloring have been studied extensively by several authors, for instance see $[3,4,7,8,9,11,14,19]$. It is proved, in [3] that it is NP-complete to determine whether a given graph G has $\eta(G)=k$ for any $k \geq 2$. Also, it was shown that, it is NP-complete to decide for a given planar 3-colorable graph G, whether $\eta(G)=2[3]$. Furthermore, it was proved that, it is NP-complete to decide for a given 3-regular graph G, whether $\eta(G)=2[11]$.

The edge version of additive labeling was introduced by Karoński, Łuczak and Thomason [16]. They introduced an edge-labeling which is additive vertex-coloring that means for every edge $u v$, the sum of labels of the edges incident to u is different from the sum of labels of the edges incident to v [16]. It is conjectured that three integer labels $\{1,2,3\}$ are sufficient for every connected graph, except K_{2} [16]. Currently the best bound is 5 [15]. This labeling has been studied extensively by several authors, for instance see $[1,2,5,17,18]$.

A clique in a graph $G=(V, E)$ is a subset of its vertices such that every two vertices in the subset are connected by an edge. The clique number $\omega(G)$ of a graph G is the number of vertices in a maximum clique in G. There is no direct relationship between the additive number and the clique number of graphs. For any natural number n there exists a graph G, such that $\omega(G)=n$ and $\eta(G)=1$. To see this for given number n, consider a graph G with the set of vertices $V(G)=\left\{v_{i} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i, j} \mid 1 \leq j<i \leq n\right\}$ and the set of edges $E(G)=\left\{v_{i} v_{j} \mid i \neq j\right\} \cup\left\{v_{i} u_{i, j} \mid 1 \leq j<i \leq n\right\}$.

Theorem 2 We have the following:
(i) For every graph $G, \eta(G) \geq \frac{w}{n-w+1}$.
(ii) If G is a regular graph and $\omega>\frac{n+4}{3}$, then $\eta(G) \geq 3$.

A $(0,1)$-additive labeling of a graph G is a function $\ell: V(G) \rightarrow\{0,1\}$, such that for every two adjacent vertices v and u of $G, \sum_{w \sim v} \ell(w) \neq \sum_{w \sim u} \ell(w)$. A graph may lack any $(0,1)$-additive labeling. It was proved that, it is NP-complete to decide for a given 3 -regular graph G, whether $\eta(G)=2$ [11]. So, it is NP-complete to decide whether a $(0,1)$-additive labeling exists for a given 3 -regular graph G. In this paper, we study the computational complexity of $(0,1)$-additive labeling for planar graphs. We show that it is NP-complete to decide whether a (0,1)-additive labeling exists for some families of graphs such as planar triangle-free graphs.

Theorem 3 It is NP-complete to determine whether a given a planar triangle-free graph G has a $(0,1)$-additive labeling?

For a graph G with some (0,1)-additive labelings, the (0,1)-additive number of G is defined as $\eta_{1}(G)=\min _{\ell \in \Gamma} \sum_{v \in V(G)} \ell(v)$ where Γ is the set of $(0,1)$-additive labelings of G. For a given graph G with a (0,1)-additive labeling ℓ the function $1+\sum_{v \in V(G)} \ell(v)$ is a proper vertex coloring, so we have the following trivial lower bound for $\eta_{1}(G)$.

$$
\chi(G)-1 \leq \eta_{1}(G) .
$$

We prove that given a planar graph that contains a $(0,1)$-additive labeling, for all $\varepsilon>0$, approximating the (0,1)-additive number within $n^{1-\varepsilon}$ is NP-hard.

Theorem 4 If $\mathbf{P} \neq \mathbf{N P}$, then for any constant $\varepsilon>0$, there is no polynomial-time $n^{1-\varepsilon}$ approximation algorithm for finding $\eta_{1}(G)$ for a given planar graph with at least one (0,1)additive labeling.

A graph G is called perfect if $\omega(H)=\chi(H)$ for every induced subgraph H of G. Finally, we show that it is NP-complete to decide whether a (0,1)-additive labeling exists for perfect graphs.

Theorem 5 The following problem is NP-complete: Given a perfect graph G, does G have any (0,1)-additive labeling?

For $v \in V(G)$ we denote by $N(v)$ the set of neighbors of v in G. Also, for every $v \in V(G)$, the degree of v is denoted by $d(v)$. We follow [13, 22] for terminology and notation not defined here, and we consider finite undirected simple graphs $G=(V, E)$.

2 Counterexample

Proof of Theorem 1. For every k we construct a graph G such that $\eta_{\ell}(G)-\eta(G) \geq k$. For every $\alpha, 1 \leq \alpha \leq 2 k-1$ consider a copy of complete graph $K_{2 k}^{(\alpha)}$, with the vertices $\left\{x_{\beta}^{\alpha}: 1 \leq \beta \leq k\right\} \cup\left\{y_{\beta}^{\alpha}: 1 \leq \beta \leq k\right\}$. Next, consider an isolated vertex t and join every vertex y_{β}^{α} to t, Call the resulting graph G. First, note that in every additive labeling ℓ of G, for every $1 \leq i<j \leq k$ we have $\sum_{z \in N\left(x_{i}^{1}\right)} \ell(z) \neq \sum_{z \in N\left(x_{j}^{1}\right)} \ell(z)$, thus $\ell\left(x_{i}^{1}\right) \neq \ell\left(x_{j}^{1}\right)$ (because all the neighbors of x_{i}^{1} and x_{j}^{1} are common except x_{i}^{1} as a neighbor of x_{j}^{1}, and vice versa). Therefore $\ell\left(x_{1}^{1}\right), \ell\left(x_{2}^{1}\right), \ldots, \ell\left(x_{k}^{1}\right)$ are k distinct numbers, that means $\eta(G) \geq k$. Define:

$$
\ell: V(G) \rightarrow\{1,2, \ldots, 2 k\}
$$

$\ell\left(x_{\beta}^{\alpha}\right)=\ell\left(y_{\beta}^{\alpha}\right)=\beta$, for every α and β,
$\ell(t)=k$.
It is easy to see that ℓ is an additive labeling for G. Next, we show that $\eta_{\ell}(G)>2 k-1$. Consider the following lists for the vertices of G.

$$
\begin{aligned}
& L\left(x_{\beta}^{\alpha}\right)=\{1,2,3, \ldots, 2 k-1\}, \text { for every } \alpha \text { and } \beta \\
& L\left(y_{\beta}^{\alpha}\right)=\{1+\alpha, 2+\alpha, 3+\alpha, \ldots, 2 k-1+\alpha\}, \text { for every } \alpha \text { and } \beta, \\
& L(t)=\{1,2,3, \ldots, 2 k-1\}
\end{aligned}
$$

To the contrary suppose that $\eta_{\ell}(G) \leq 2 k-1$ and let ℓ be an additive labeling from the above lists. Suppose that $\ell(t)=r$. Consider the complete graph $K_{2 k}^{(r)}$, we have:

$$
\begin{aligned}
& L\left(x_{\beta}^{r}\right)=\{1,2,3, \ldots, 2 k-1\}, 1 \leq \beta \leq k \\
& L\left(y_{\beta}^{r}\right)=\{1+r, 2+r, 3+r, \ldots, 2 k-1+r\}, 1 \leq \beta \leq k
\end{aligned}
$$

Now, consider the following partition for $\{1,2,3, \ldots, 2 k-1\} \cup\{1+r, 2+r, 3+r, \ldots, 2 k-$ $1+r\}$,

$$
\{1+r, 1\},\{2+r, 2\}, \ldots,\{2 k-1+r, 2 k-1\}
$$

By Pigeonhole Principle, there are indices i, n and m such that $\ell\left(x_{m}^{r}\right), \ell\left(y_{n}^{r}\right) \in\{i+r, i\}$, so $\ell\left(x_{m}^{r}\right)=i$ and $\ell\left(y_{n}^{r}\right)=i+r$. Therefore, $\sum_{z \in N\left(x_{m}^{r}\right)} \ell(z)=\sum_{z \in N\left(y_{n}^{r}\right)} \ell(z)$. This is a contradiction, so $\eta_{\ell}(G) \geq 2 k$.

3 Lower bounds

Proof of Theorem 2. (i) Let $\ell: V(G) \rightarrow\{1, \ldots, k\}$ be an additive labeling of G and suppose that $T=\left\{v_{1}, \ldots, v_{\omega}\right\}$ is a maximum clique in G. For each vertex $v \in T$, define the function Y_{v}.

$$
Y_{v} \stackrel{\text { def }}{=} \sum_{\substack{x \in V(G) \backslash T \\ x \sim v}} l(x)-l(v) .
$$

For every two adjacent vertices v and u in T, we have:

$$
\sum_{x \sim v} l(x) \neq \sum_{x \sim u} l(x),
$$

$$
\begin{aligned}
\sum_{\substack{x \notin \mathbb{~} \\
x \sim v}} l(x)+\sum_{\substack{x \in T \\
x \neq v}} l(x) & \neq \sum_{\substack{x \notin \mathbb{T} \\
x \sim u}} l(x)+\sum_{\substack{x \neq T \\
x \neq u}} l(x), \\
\sum_{\substack{x \notin T \\
x \sim v}} l(x)+l(u) & \neq \sum_{\substack{x \notin T \\
x \sim u}} l(x)+l(v), \\
Y_{v} & \neq Y_{u} .
\end{aligned}
$$

Thus, $Y_{v_{1}}, \ldots, Y_{v_{\omega}}$ are distinct numbers. On the other hand, for each vertex $v \in T$, the domain of the function Y_{v} is $[-k, k(n-w)-1]$. So $w \leq k(n-w+1)$, therefore $k \geq \frac{w}{n-w+1}$ and the proof is completed.
(ii) Let G be a regular graph, obviously $\eta(G) \geq 2$. To the contrary suppose that $\eta(G)=2$. Let T be a maximum clique in G and $c: V(G) \rightarrow\{1,2\}$ be an additive labeling of G. Define:

$$
\begin{aligned}
X_{1} & =c^{-1}(1) \cap T, & & X_{2}=c^{-1}(2) \cap T, \\
Y_{1} & =c^{-1}(1) \backslash T, & & Y_{2}=c^{-1}(2) \backslash T .
\end{aligned}
$$

Suppose that $X_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $X_{2}=\left\{v_{k+1}, \ldots, v_{\omega}\right\}$. For each $1 \leq i \leq \omega$, denote the number of neighbors of v_{i}, in Y_{1} by d_{i}. Since c is an additive labeling of the regular graph, so every two adjacent vertices have different numbers of neighbors in $c^{-1}(1)$. Therefore $d_{1}, \ldots, d_{k}, 1+d_{k+1}, \ldots, 1+d_{\omega}$ are distinct numbers. Since for each $1 \leq i \leq \omega$, $0 \leq d_{i} \leq\left|Y_{1}\right|$, we have $\left|Y_{1}\right| \geq \omega-2$. Similarly, $\left|Y_{2}\right| \geq \omega-2$, so

$$
n=|T|+\left|Y_{1}\right|+\left|Y_{2}\right| \geq 3 \omega-4
$$

This is a contradiction. So the proof is completed.

4 Planar graphs

Proof of Theorem 3. Let Φ be a 3-SAT formula with the set of clauses C and the set of variables X. Let $G(\Phi)$ be a graph with the vertices $C \cup X \cup(\neg X)$, where $\neg X=\{\neg x$: $x \in X\}$, such that for each clause $c=y \vee z \vee w, c$ is adjacent to y, z and w, also every $x \in X$ is adjacent to $\neg x$. Φ is called planar 3-SAT(type 2) formula if $G(\Phi)$ is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT(type 2) is NP-complete [12]. In order to prove our theorem, we reduce the following problem to our problem.

Problem: Planar 3-SAT(type 2).
Input: A 3-SAT(type 2) formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?

Consider an instance of planar 3-SAT(type 2) with the set of variables X and the set of clauses C. We transform this into a graph $G^{\prime}(\Phi)$ such that $G^{\prime}(\Phi)$ has a $(0,1)$-additive labeling, if and only if Φ is satisfiable. The graph $G^{\prime}(\Phi)$ has a copy of $B(x)$ for each variable x and a copy of $A(c)$ for each clause $c . B(x)$ and $A(c)$ are shown in Figure 1. Also, for every $c \in C, x \in X$, the edge $w_{c}^{1} x$ is added if c contains the literal x. Furthermore, for every $c \in C, \neg x \in \neg X$, the edge $w_{c}^{1} \neg x$ is added if c contains the literal $\neg x$. Call the resulting graph $G^{\prime}(\Phi)$. Clearly $G^{\prime}(\Phi)$ is triangle-free and planar.

Figure 1: The two auxiliary graphs $A(c)$ and $B(x)$.

Fact 1 Let ℓ be a $(0,1)$-additive labeling for $G^{\prime}(\Phi)$, for each clause $c=a \vee b \vee c, \ell(a)+$ $\ell(b)+\ell(c) \geq 1$.

Proof of Fact 1. To the contrary suppose that there exists a clause $c=a \vee b \vee c$, such that $\ell(a)+\ell(b)+\ell(c)=0$, then $\sum_{t \in N\left(w_{c}^{1}\right)} \ell(t)=\ell\left(w_{c}^{2}\right)+\ell\left(w_{c}^{3}\right)$. Consider the odd cycle $w_{c}^{1} w_{c}^{2} w_{c}^{4} w_{c}^{5} w_{c}^{3}$, but an odd cycle does not have any (0,1)-additive labeling, this is a contradiction.

Fact 2 Let $G^{\prime}(\Phi)$ be a graph with a $(0,1)$-additive labeling ℓ, for each variable $x, \ell(x)+$ $\ell(\neg x) \leq 1$.

Proof of Fact 2. To the contrary, suppose that there is a variable x, such that $\ell(x)+\ell(\neg x)=2$. Consider the auxiliary graph $B(x)$. Because of the odd cycle $y_{x}^{1} y_{x}^{2} y_{x}^{4} y_{x}^{5} y_{x}^{3}$, $\ell\left(y_{x}^{6}\right)=1$. Now two cases for $\ell\left(y_{x}^{5}\right)$ can be considered.

Case 1. $\ell\left(y_{x}^{5}\right)=1$. Thus $\sum_{t \in N\left(y_{x}^{6}\right)} \ell(t)=3$, therefore $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t) \in\{1,2\}$.

- If $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t)=1$, then $\ell\left(y_{x}^{3}\right)=\ell\left(y_{x}^{4}\right)=0$. Thus, $\ell\left(y_{x}^{1}\right)+\ell\left(y_{x}^{2}\right)=1$; without loss of generality suppose that $\ell\left(y_{x}^{1}\right)=1$ and $\ell\left(y_{x}^{2}\right)=0$, in this case $\sum_{t \in N\left(y_{x}^{2}\right)} \ell(t)=\sum_{t \in N\left(y_{x}^{4}\right)} \ell(t)$, but this is a contradiction.
- If $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t)=2$. Suppose that $\ell\left(y_{x}^{3}\right)=1, \ell\left(y_{x}^{4}\right)=0$. Four subcases for $\ell\left(y_{x}^{1}\right), \ell\left(y_{x}^{2}\right)$ can be considered, each of them produces a contradiction.

Case 2. $\ell\left(y_{x}^{5}\right)=0$. Thus $\sum_{t \in N\left(y_{x}^{6}\right)} \ell(t)=2$, therefore $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t) \in\{1,3\}$.

- If $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t)=1$, so $\ell\left(y_{x}^{3}\right)=\ell\left(y_{x}^{4}\right)=0$. Therefore, $\ell\left(y_{x}^{1}\right)+\ell\left(y_{x}^{2}\right)=1$. With no loss of generality suppose that $\ell\left(y_{x}^{1}\right)=1, \ell\left(y_{x}^{2}\right)=0$, therefore $\sum_{t \in N\left(y_{x}^{3}\right)} \ell(t)=\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t)$, but this is a contradiction.
- If $\sum_{t \in N\left(y_{x}^{5}\right)} \ell(t)=3$, so $\ell\left(y_{x}^{3}\right)+\ell\left(y_{x}^{4}\right)=2$. So $\ell\left(y_{x}^{1}\right)+\ell\left(y_{x}^{2}\right)=1$. Suppose that $\ell\left(y_{x}^{1}\right)=1, \ell\left(y_{x}^{2}\right)=0$, therefore $\sum_{t \in N\left(y_{x}^{1}\right)} \ell(t)=\sum_{t \in N\left(y_{x}^{3}\right)} \ell(t)$, this is a contradiction.

First, suppose that Φ is satisfiable with the satisfying assignment $\Gamma: X \rightarrow\{$ true, false $\}$. We present a $(0,1)$-additive labeling ℓ for $G^{\prime}(\Phi)$; for every variable x if $\Gamma(x)=$ true, then put $\ell(x)=1$, otherwise put $\ell(\neg x)=1$. Also put $\ell\left(z_{1}\right)=\cdots \ell\left(z_{10}\right)=\ell\left(y_{x}^{1}\right)=\ell\left(y_{x}^{3}\right)=$ $\ell\left(y_{x}^{4}\right)=\ell\left(y_{x}^{5}\right)=\ell\left(y_{x}^{6}\right)=1$. Moreover, for every clause c, put $\ell\left(w_{c}^{1}\right)=\ell\left(w_{c}^{2}\right)=\ell\left(w_{c}^{3}\right)=$ $\ell\left(w_{c}^{5}\right)=1$. It is easy to extend this labeling to a (0,1)-additive labeling for $G^{\prime}(\Phi)$. Next, suppose that $G^{\prime}(\Phi)$ has a $(0,1)$-additive labeling ℓ. For each variable x, by Fact 2 , $\ell(x)+\ell(\neg x) \leq 1$. If $\ell(x)=1$, put $\Gamma(x)=$ true, if $\ell(\neg x)=1$, then put $\Gamma(x)=$ false and otherwise put $\Gamma(x)=$ true. By Fact $1, \Gamma$ is a satisfying assignment for Φ.

5 Inapproximability

Proof of Theorem 4. Let $\varepsilon>0$ and k be a sufficiently large number. It was shown that 3-colorability of 4-regular planar graphs is NP-complete [10]. We reduce this problem to our problem, in more details for a given 4 -regular planar graph G with k vertices, we construct a planar graph G^{*} with $7 k+10 k^{\left[\frac{3}{\varepsilon}\right\rceil+2}$ vertices, such that if $\chi(G) \leq 3$, then $\eta_{1}\left(G^{*}\right) \leq 5 k$, otherwise $\eta_{1}\left(G^{*}\right)>5 k^{\left[\frac{3}{\varepsilon}\right\rceil+1}$, therefore there is no θ-approximation algorithm for determining $\eta_{1}\left(G^{*}\right)$ for planar graphs, where:

$$
\begin{aligned}
\theta=\frac{\text { Approximate Answer }}{O P T} & >\frac{5 k^{\left[\frac{3}{\varepsilon}\right\rceil+1}}{5 k} \\
& =k^{\left[\frac{3}{\varepsilon}\right\rceil} \\
& =\left(k^{\left[\frac{3}{\varepsilon}\right\rceil+3}\right)^{\frac{\left[\frac{3}{\varepsilon}\right]}{\left[\frac{\varepsilon}{\varepsilon}\right\rceil+3}} \\
& \geq\left(7 k+10 k^{\left[\frac{3}{\varepsilon}\right\rceil+2}\right)^{\frac{\left[\frac{3}{\varepsilon}\right]}{\left[\frac{3}{\varepsilon}\right]+3}} \\
& \geq\left|V\left(G^{*}\right)\right|^{\frac{\left[\frac{3}{\varepsilon}\right]}{\left[\frac{\varepsilon}{\varepsilon}\right]+3}} \\
& \geq\left|V\left(G^{*}\right)\right|^{1-\varepsilon}
\end{aligned}
$$

In order to construct G^{*}, we use the auxiliary graphs $D(v)$ which is shown in Figure 2. Using simple local replacements, for every vertex v of G, put a copy of $D(v)$, and for every edge $v u$ of G, join the vertex v of $D(v)$ to the vertex u of $D(v)$. Call the resulting graph G^{*}. First, suppose that G is not 3 -colorable and let ℓ be a $(0,1)$-additive labeling for G^{*}. By the structure of $D(v)$ we have $\ell(v)=1$ and $\ell\left(p_{3}\right)=0$, so $\sum_{x \in N(v)} \ell(x)=4+\ell\left(p_{4}\right)+\ell\left(p_{5}\right)+\ell\left(p_{6}\right)$. Since G is not 3 -colorable, so there exists a vertex v such that $\sum_{x \in N(v)} \ell(x)=3$, therefore in the subgraph $D(v), \ell\left(p_{4}\right)+\ell\left(p_{5}\right)+\ell\left(p_{6}\right)=0$, so $\ell\left(p_{5}\right)=0$. Consequently for every i, $1 \leq i \leq d$, in the subgraph $D(v), \ell\left(v_{i}\right)+\ell\left(v_{i}^{\prime}\right) \geq 1$. So $\eta_{1}\left(G^{*}\right)>5 k^{\left[\frac{3}{\varepsilon}\right\rceil+1}$. Next, suppose that $\chi(G) \leq 3$. So G has a proper vertex coloring $c: V(G) \rightarrow\{1,2,3\}$. For every vertex v of G, if $c(v)=1$ put $\ell\left(p_{4}\right)=\ell\left(p_{6}\right)=0$ and $\ell\left(p_{5}\right)=1$, else if $c(v)=2$ let $\ell\left(p_{4}\right)=0$ and $\ell\left(p_{5}\right)=\ell\left(p_{6}\right)=1$ and if $c(v)=3$ let $\ell\left(p_{4}\right)=\ell\left(p_{5}\right)=\ell\left(p_{6}\right)=1$. It is easy to extend ℓ to a $(0,1)$-additive labeling for G^{*} such that $\eta_{1}\left(G^{*}\right) \leq 5 k$.

Figure 2: The auxiliary graph $D(v)$. This graph has $7+10 k^{\left[\frac{3}{\varepsilon}\right\rceil+1}$ vertices, where $d=$ $5 k^{\left.\frac{3}{\varepsilon}\right\rceil+1}$.

6 List Coloring Problem

Proof of Theorem 5. Let G be a graph and let L be a function which assigns to each vertex v of G a set $L(v)$ of positive integers, called the list of v. A proper vertex coloring $c: V(G) \rightarrow \mathbb{N}$ such that $f(v) \in L(v)$ for all $v \in V$ is called a list coloring of G with respect to L, or an L-coloring, and we say that G is L-colorable.

In the next, for a given graph G and a list $L(v)$ for every vertex v, we construct a graph H_{G} such that H_{G} has a $(0,1)$-additive labeling if and only if G is L-colorable.

Define $W=\bigcup_{v \in V(G)} L(v)$ and let f be a bijective function from the set W to the set $\{2,3, \cdots,|W|+1\}$. For every vertex $v \in V(G)$, let $L_{f}(v)=\{f(i) \mid i \in L(v)\} . G$ is L-colorable if and only if G is L_{f}-colorable. Now, we construct H_{G} form G and L_{f}.

Construction of H_{G}. We use three auxiliary graphs $T(w), I(j)$ and $G\left(v, L_{f}(v), s\right)$. $T(w)$ and $I(j)$ are shown in Figure 3. Consider a vertex v and a copy of auxiliary graph $T(w)$. Join v to $T(w)$. Next, for every $j \in\{2, \ldots, s\} \backslash L_{f}(v)$ consider a copy of $I(j)$ and join v to u_{j}. Finally, put s isolated vertices and join each of them to v. Call the resulting graph $G\left(v, L_{f}(v), s\right)$. Now, for every vertex $v \in V(G)$ put a copy of $G\left(v, L_{f}(v),|W|+1\right)$ and for every edge $v v^{\prime}$ in G join $v \in V\left(G\left(v, L_{f}(v),|W|+1\right)\right.$ to $v^{\prime} \in V\left(G\left(v^{\prime}, L_{f}\left(v^{\prime}\right),|W|+1\right)\right.$. Call the resulted graph H_{G}.

For a family \mathscr{F} of graphs, define: $\mathscr{F}^{\prime} \stackrel{\text { def }}{=}\left\{H_{G} \mid G \in \mathscr{F}\right\}$. We show that if \mathscr{F} is a family of graphs such that list coloring problem is NP-complete over that family. Then, the following problem is NP-complete: "Given a graph $H_{G} \in \mathscr{F}^{\prime}$, does H_{G} have a $(0,1)$ additive labeling?

Figure 3: The auxiliary graphs $I(j)$ and $T(w)$.

First consider the following fact.

Fact 3 Let G be a graph with a $(0,1)$-additive labeling ℓ and have the auxiliary graph $T(w)$ as a subgraph, $\ell(v)=0, \ell(w)=1$ and $\sum_{x \in N(w)} \ell(x)=1$.

Proof of Fact 3. By attention to the two triangles $x_{1} x_{2} x_{3}$ and $y_{1} y_{2} y_{3}, \ell(w)=1$ and $\ell\left(y_{4}\right)=1$. Also $\ell\left(x_{1}\right) \neq \ell\left(x_{2}\right)$, without loss of generality suppose that $\ell\left(x_{1}\right)=1$ and $\ell\left(x_{2}\right)=0$. Therefore, $\ell\left(x_{3}\right)=0$, thus $\sum_{x \in N(w)} \ell(x)=1+\ell(v)$. Since $\sum_{x \in N\left(x_{3}\right)} \ell(x)=2$, therefore $\sum_{x \in N(w)} \ell(x)=1$, consequently $\ell(v)=0$.

Fact 4 Let G be a graph with a $(0,1)$-additive labeling ℓ and have the auxiliary graph $I(j)$ as a subgraph, $\sum_{x \in N\left(u_{j}\right)} \ell(x) \geq j$.

Proof of Fact 4. By Fact $3, \ell(w)=1$, while using similar arguments $\ell\left(z_{1}\right)=\cdots=$ $\ell\left(z_{j-1}\right)=1$. So $\sum_{x \in N\left(u_{j}\right)} \ell(x) \geq j$.

Fact 5 Let ℓ be a $(0,1)$-additive labeling for $G\left(v, L_{f}(v),|W|+1\right), \sum_{x \in N(v)} \ell(x) \in L_{f}(v)$.

Proof of Fact 5. By Fact 3 and Fact 4 it is clear.
First, suppose that H_{G} has a $(0,1)$-additive labeling ℓ, define $c: V(G) \rightarrow \mathbb{N}, c(v)=$ $\sum_{x \in N(v)} \ell(x) . c$ is a proper vertex coloring and for every vertex v, by Fact 5, $c(v) \in L_{f}(v)$. Next, suppose that G is L_{f}-colorable, then clearly, H_{G} has a (0,1)-additive labeling.

The list coloring problem is NP-complete for perfect graphs and planar graphs (see [6]). Obviously if G is a planar graph, then H_{G} is a planar graph. Also, if G is a perfect graph, then it is easy to see that H_{G} is a perfect graph. This completes the proof.

7 Concluding remarks

In this paper we study the computational complexity of $(0,1)$-additive labeling of graphs. A $(0,1)$-additive labeling of a graph G is a function $\ell: V(G) \rightarrow\{0,1\}$, such that for every two adjacent vertices v and u of $G, \sum_{w \sim v} \ell(w) \neq \sum_{w \sim u} \ell(w)$. We can consider another version of this problem that we call it proper total dominating set. The proper total dominating set of a graph $G=(V, E)$, that is a subset D of V such that every vertex has a neighbor in D (all vertices in the graph including the vertices in the dominating set have at least one neighbor in the dominating set) and every two adjacent vertices have a different number of neighbors in D.

8 Acknowledgment

The authors wish to thank Saieed Akbari who drew their attention to Additive List Coloring Conjecture.

References

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal, and B. A. Reed. Vertex colouring edge partitions. J. Combin. Theory Ser. B, 94(2):237-244, 2005.
[2] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Discrete Appl. Math., 156(7):1168-1174, 2008.
[3] A. Ahadi, A. Dehghan, M. Kazemi, and E. Mollaahmadi. Computation of lucky number of planar graphs is NP-hard. Inform. Process. Lett., 112:109-112, 2012.
[4] S. Akbari, M. Ghanbari, R. Manaviyat, and S. Zare. On the lucky choice number of graphs. Graphs Combin., 29(2):157-163, 2013.
[5] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. J. Graph Theory, 60(3):242-256, 2009.
[6] F. Bonomo, G. Duŕan, and J. Marenco. Exploring the complexity boundary between coloring and list-coloring. Electronic Notes in Discrete Mathematics, 25:41-47, 2006.
[7] M. Borowiecki, J. Grytczuk, and M Pilśniak. Coloring chip configurations on graphs and digraphs. Inform. Process. Lett., 112(1-2):1—4, 2012.
[8] Gary Chartrand, Futaba Okamoto, and Ping Zhang. The sigma chromatic number of a graph. Graphs Combin., 26(6):755-773, 2010.
[9] Sebastian Czerwiński, Jarosław Grytczuk, and Wiktor Żelazny. Lucky labelings of graphs. Inform. Process. Lett., 109(18):1078-1081, 2009.
[10] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math., 30(3):289-293, 1980.
[11] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. The complexity of the sigma chromatic number of cubic graphs. Submitted.
[12] Ding-Zhu Du, Ker-K Ko, and J. Wang. Introduction to Computational Complexity. Higher Education Press, 2002.
[13] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. Bull. Amer. Math. Soc. (N.S.), 3(2):898-904, 1980.
[14] J. Grytczuk, T. Bartnicki, S. Czerwiński, B. Bosek, G. Matecki, and W. Żelazny. Additive colorings of planar graphs, manuscript, arxiv:1202.0667v2.
[15] Maciej Kalkowski, Michał Karoński, and Florian Pfender. Vertex-coloring edgeweightings: towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 100(3):347-349, 2010.
[16] Michał Karoński, Tomasz Luczak, and Andrew Thomason. Edge weights and vertex colours. J. Combin. Theory Ser. B, 91(1):151-157, 2004.
[17] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B Stevens. Digraphs are 2-weight choosable. Electron. J. Combin., 18(1):Paper 21,4, 2011.
[18] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B. Stevens. Vertexcolouring edge-weightings with two edge weights. Discrete Math. Theor. Comput. Sci., 14(1):1-20, 2012.
[19] Michał Lasoń. A generalization of combinatorial Nullstellensatz. Electron. J. Combin., 17(1):Note 32, 6, 2010.
[20] B. Seamone. On weight choosability and additive choosability numbers of graphs. manuscript, http://arxiv.org/abs/1210.6944.
[21] B. Seamone. Derived colourings of graphs. PhD thesis, Carleton University, 2012.
[22] Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

[^0]: *E-mail addresses: arash_ahadi@mehr.sharif.edu, ali_dehghan16@aut.ac.ir.

