Clique-width

El clique-width de un grafo G es el número mínimo de etiquetas necesarias para construir G utilizando las siguientes cuatro operaciones:

- 1. Creación de un nuevo vértice v con etiqueta i (denotado por i(v)).
- 2. Unión disjunta de dos grafos etiquetados G y H (denotado por $G \oplus H$).
- 3. Join: Conexión por una arista de cada vértice con etiqueta i con cada vértice con etiqueta j $(i \neq j, \text{ denotado por } \eta_{i,j}).$
- 4. Re-etiquetado: Renombrar etiqueta i a etiqueta j (denotado $\rho_{i\rightarrow j}$)

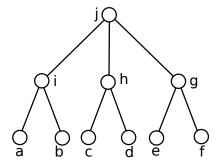
Todo grafo G puede ser construido por una expresión algebraica usando estas cuatro operaciones. Por ejemplo, un camino de cinco vértices a, b, c, d, e, puede ser construido de la siguiente forma:

$$\eta_{3,2}(3(e) \oplus \rho_{3\rightarrow 2}(\rho_{2\rightarrow 1}(\eta_{3,2}(3(d) \oplus \rho_{3\rightarrow 2}(\rho_{2\rightarrow 1}(\eta_{3,2}(3(c) \oplus \eta_{2,1}(2(b) \oplus 1(a)))))))).$$

Una tal expresión se denomina k-expresión si utiliza a lo sumo k etiquetas diferentes. Luego, el *clique-width* de G, denotado cw(G), es el mínimo k para el cual existe una k-expresión que construya G.

Ejemplo

El siguiente grafo:



tiene la siguiente 3-expresión:

$$\eta_{32}(3(j) \oplus ((\eta_{21}(2(g) \oplus 1(e) \oplus 1(f))) \oplus (\eta_{21}(2(g) \oplus 1(e) \oplus 1(f))) \oplus (\eta_{21}(2(g) \oplus 1(e) \oplus 1(f)))))$$

MSOL

Con respecto a las propiedades en grafos, si una fórmula puede ser definida usando vértices y conjuntos de vértices de un grafo, los operadores lógicos OR, AND, NOT (denotados por \vee , \wedge , \neg), los cuantificadores lógicos \forall y \exists sobre vértices y conjuntos de vértices, la relación de pertenencia \in , el operador igualdad = para vértices y la relación binaria de adyacencia adj, donde adj(u, v) es

verdadera si y solo si u y v son adyacentes, entonces la fórmula es expresable en lógica monádica de segundo orden τ_1 (MSOL(τ_1)).

Observación 1: En lugar de escribir $u \in X$, es usual usar la notación X(u).

Observación 2: Con $a \to b$ denotamos la relación de implicancia, la cual se reduce a $\neg a \lor b$.

Ejemplos:

1) X es conjunto independiente:

$$Ind(X) \equiv \forall u, v((X(u) \land X(v)) \rightarrow \neg adj(u, v))$$

2) X, Y, Z son una partición de V(G):

$$Part(X,Y,Z) \equiv \forall v(X(v) \lor Y(v) \lor Z(v)) \land \neg \exists u((X(u) \land Y(u)) \lor (X(u) \land Z(u)) \lor (Z(u) \land Y(u)))$$

3) G es 3-coloreable:

$$3Col \equiv \exists X, Y, Z(Part(X, Y, Z) \land Ind(X) \land Ind(Y) \land Ind(Z))$$

Un problema de optimización P es un LinEMSOL (τ_1) problema de optimización sobre grafos, si puede ser definido de la siguiente forma. Dado un grafo G y funciones f_1, \ldots, f_m a valores enteros sobre los vértices de G, encontrar una asignación z al conjunto de variables libres en θ tal que

$$\sum_{\substack{1 \le i \le l \\ 1 \le j \le m}} a_{ij} |z(X_i)|_j = opt \left\{ \sum_{\substack{1 \le i \le l \\ 1 \le j \le m}} a_{ij} |z'(X_i)|_j : \theta(X_1, \dots, X_l) \text{ es verdadera para } G \neq z' \right\},$$

donde θ es una MSOL (τ_1) fórmula con conjunto de variables libres $X_1, \ldots, X_l, a_{ij} : i \in \{1, \ldots, l\}, j \in \{1, \ldots, m\}$ son números enteros y $|z(X_i)|_j := \sum_{a \in z(X_i)} f_j(a)$.

Ejemplo

Dado un grafo G, el problema de la Clique de Peso Entero Máximo es un problema LinEMSOL (τ_1) ya que puede ser expresado de la siguiente forma. Dado un grafo G y una función f_1 que asocia pesos enteros a sus vértices, encontrar una asignación z al conjunto de variables libres X_1 in θ tal que:

$$|z(X_1)|_1 = \max\{|z'(X_1)|_1: \theta(X_1) \text{ es verdadera para } G \ge z'\}$$

donde $\theta(X_1)$ está definida por:

$$\theta(X_1) = \forall u, v((X_1(u) \land X_1(v) \land u \neq v) \rightarrow adj(u, v)).$$

Se conoce que los conceptos de LinEMSOL(τ_1) y clique-width son particularmente útiles combinados como muestra el siguiente resultado:

Teorema [1, 2] Sea q una constante y C(q) una clase de grafos con clique-width a lo sumo q. Entonces todo problema $LinEMSOL(\tau_1)$ sobre C(q) puede ser resuelto en tiempo polinomial.

Luego, por ejemplo, el problema de k-coloreo con k fijo, es poliniomial en las familias de grafos con clique-width acotado por una constante.

Más definiciones y propiedades

Dada una clase de grafos \mathscr{F} , \mathscr{F}_n denota el número de grafos con etiquetas que distinguen sus n vértices (i.e., grafos con conjunto de vértices $\{1,2,\ldots,n\}$) en la clase \mathscr{F} . Por ejemplo, si \mathscr{F} es la familia de caminos, entonces $\mathscr{F}_3=3$ pues solo se pueden armar los caminos P_3 cuyos conjuntos de aristas son $\{(1,2),(2,3)\}$, $\{(1,2),(1,3)\}$ y $\{(1,3),(2,3)\}$. Si \mathscr{F} es la familia de grafos completos, entonces $\mathscr{F}_n=1$ para todo n.

No es difícil ver que para cualquier clase de grafos \mathscr{F} resulta $0 \leq \mathscr{F}_n \leq 2^{\frac{n(n-1)}{2}}$ (para evitar simetrías, el conjunto de aristas siempre se puede representar con pares (i,j) con i < j).

Luego, una clase de grafos \mathscr{F} es factorial si para todo $n, n^{c_1n} \leq \mathscr{F}_n \leq n^{c_2n}$ para algunas constantes c_1 y c_2 . Algunas clases de grafos factoriales son los grafos planares y grafos de línea.

Si no existe una constante c tal que $\mathscr{F}_n \leq n^{cn}$ para todo n, entonces se dice que \mathscr{F} es superfactorial.

Se conoce que si una clase de grafos es superfactorial entonces su clique-width es no acotado.

Dado un grafo G = (V, E) y un entero positivo k, un subconjunto B de vértices de G es un k-empaquetamiento de G si para todo $v \in V$, $|B \cap N[v]| \leq k$. Notamos $L_k(G)$ al máximo cardinal de un k-empaquetamiento de G. El Problema de k-Empaquetamiento es el de hallar un k-empaquetamiento de G de cardinal máximo. De forma similar, un subconjunto D de vértices de G es un conjunto k-dominante de G si para todo $v \in V$, $|B \cap N[v]| \geq k$. Notamos $\gamma_k(G)$ al mínimo cardinal de un conjunto k-dominante de G. El Problema de k-Dominación es el de hallar un conjunto k-dominante de G de cardinal mínimo.

Dado un grafo G = (V, E) y un entero positivo k, una función $f : V \mapsto \{0, \ldots, k\}$ es una función $\{k\}$ -dominante de G si $f(N[v]) \geq k$ $(f(U) = \sum_{u \in U} f(u), \forall U \subseteq V)$. El Problema de $\{k\}$ -Dominación es hallar una función $\{k\}$ -dominante de peso mínimo, i.e. tal que f(V) sea mínimo. Notamos $\gamma_{\{k\}}(G)$ al mínimo peso de las funciones $\{k\}$ -dominantes de G.

Sean G y H dos grafos disjuntos y $v \in V(G)$, luego G[H/v] denota el grafo obtenido por reemplazo en G de v por H, i.e. $V(G[H/v]) = (V(G) \cup V(H)) - \{v\}$ y

```
E(G[H/v]) = E(H) \cup \{e : e \in E(G) \text{ y } e \text{ es no incidente en } v\} \cup \{uw : u \in V(H), w \in V(G) \text{ y } w \text{ es adyacente a } v \text{ en } G\}.
```

Dados grafos G y H, notamos $G \odot H$ al grafo obtenido reemplazando todos los vértices de G por H. Si, por ejemplo K_i es el grafo completo de i vértices, $K_n \odot K_m$ es isomorfo a K_{n+m} .

References

- [1] B. Courcelle, J. A. Makowsky, U. Rotics, *Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width*, Theory of Computing Systems 33, (2000) 125–150.
- [2] S. Oum, P. Seymour, Approximating clique-width and branch-width, Journal of Combinatorial Theory, Series B 96, (2006) 514–528.