
Linear Time Solvable Optimization Problems onGraphs of Bounded Clique WidthB. Courcelle and J.A. Makowsky? and U. RoticsLaboratoire d'InformatiqueUniversit�e Bordeaux-I33405 Talence, FranceBruno.Courcelle@labri.u-bordeaux.frDepartment of Computer ScienceTechnion{Israel Institute of Technology32000 Haifa, Israelfjanos,roticsg@cs.technion.ac.ilRevised: August 1999Abstract. Hierarchical decompositions of graphs are interesting for algo-rithmic purposes. There are several types of hierarchical decompositions.Tree decompositions are the best known ones. On graphs of tree-width atmost k, i.e., that have tree decompositions of width at most k, where k is�xed, every decision or optimization problem expressible in monadic second-order logic has a linear algorithm. We prove that this is also the case forgraphs of clique-width at most k, where this complexity measure is asso-ciated with hierarchical decompositions of another type, and where logicalformulas are no longer allowed to use edge set quanti�cations. We developapplications to several classes of graphs that include cographs and are, likecographs, de�ned by forbidding subgraphs with \too many" induced pathswith four vertices.
? Partially supported by a Grant of the Israeli Ministry of Science for French-Israeli Coop-eration (1994), a Grant of the German-Israeli Binational Foundation (1995-1996), andby the Fund for Promotion of Research of the Technion{Israeli Institute of Technology

Table of Contents1 Introduction : 22 Background : 42.1 Graphs as logical structures . 42.2 Monadic Second Order Logic decision and optimization problems . . 52.3 MSOL translation schemes and transductions 72.4 The modular decomposition of P4-sparse graphs 93 Linear algorithms for optimization problems on P4-sparse graphs 104 Linear algorithms for optimizationproblems on graphs of boundedclique-width : 134.1 Graph operations and clique-width 134.2 P4-tidy graphs are of cwd � 4 and (q; q � 4) graphs are of cwd � q . 144.3 The Feferman-Vaught Theorem . 164.4 The linear time algorithms . 175 Results that do not extend to MSOL(�2) : : : : : : : : : : : : : : : 19

1

1 IntroductionThe class of P4-sparse graphs was introduced by Ho�ang in his doctoral dissertation[Ho�a85], as the class of graphs for which every set of �ve vertices induces at mostone P4 (by a P4 we mean a path on four vertices). This class contains the classof P4-reducible graphs introduced by Jamison and Olariu in [JO89], as the class ofgraphs for which no vertex belongs to more than one induced P4. These two classescontain the class of cographs, and have been studied intensively in the recent years.Such a study is motivated by the practical applications of these classes in areas suchas scheduling, clustering and computational semantics. In [JO89] and in [JO92b] aunique tree presentation is proposed for the classes of P4-reducible and P4-sparsegraphs respectively. These tree presentations are used later in [JO95a] and in [JO92a]to develop O(jV j + jEj) time recognition algorithms for these classes. In [JO95b]O(jV j + jEj) time algorithms are proposed for solving �ve optimization problemson the class of P4-sparse graphs: maximum size clique, maximum size stable set,minimum coloring, minimum covering by cliques, and minimum �ll-in. If the treepresentation of the P4-sparse graph is also given as input, then the running time ofthese algorithms is just O(jV j) independently of the number of edges in the graph.Jamison and Olariu conclude their paper withProblem1 [JO95b]. Find other optimization problems which can be solved inlinear time on the class of P4-sparse graphs.Giakoumakis and Vanherpe in [GV97] took up this line of research. They used themodular decomposition of a graph, to obtain O(jV j+ jEj) time algorithms for themaximumweight clique and for the maximumweight stable set problems in the caseof P4-sparse graphs, for the optimal weighted coloring and for the minimumweightclique cover problems in the case of P4-reducible graphs. If the modular decompo-sition of the graph is given as input, then the running time of these algorithms isjust O(jV j).Giakoumakis and Vanherpe also introduced in [GV97] the classes of extendedP4-sparse and extended P4-reducible graphs, and showed how to extend their resultsto these two classes of graphs, with minimal additional work.Babel and Olariu introduced in [BO95] the class of (q; t) graphs. A (q; t) graphis a graph in which no set with at most q vertices is allowed to induce more than tdistinct P4's. Clearly, it is assumed that q � 4. The class of (q; q�4) graphs extendsthe class of P4-sparse graphs. In particular (5; 1) graphs are exactly the P4-sparsegraphs and (4; 0) graphs are exactly the cographs.Rusu, cf. [GRT97], introduced the class of P4-tidy graphs which extends theclass of extended P4-sparse graphs. Let G be a graph and X be an induced P4. Avertex v outside X is a partner of X if X and v together induce two P4's. A graphis P4-tidy if any induced P4 has at most one partner.In Section 3 we show that a wide class of decision and optimization problemson the class of P4-sparse graphs is solvable in time O(jV j+ jEj) or in time O(jV j)assuming that the modular decomposition of the graph is given as input. Theseproblems are characterized by their expressibility in certain variations of MonadicSecond Order Logic,MSOL(�1;p) (for decision problems) or LinEMSOL(�1;p) (foroptimization problems), the study of which was initiated by B. Courcelle and othersin a sequence of papers [Cou90, Cou91, Cou94b, Cou95, Cou96, CM93, ALS91].Roughly speaking, MSOL(�1) is Monadic Second Order Logic with quanti�cationover subsets of vertices, but not of edges;MSOL(�1;p) is the extension ofMSOL(�1)by unary predicates representing labels attached to the vertices. LinEMSOL(�1;p)is the extension ofMSOL(�1;p) which allows to search for sets of vertices which areoptimal with respect to some linear evaluation function. The precise de�nitions willbe given in Section 2. A typical MSOL(�1) decision problem is k-colorability for2

�xed k. The maximumweight clique and the maximum weight stable set problemsare LinEMSOL(�1;p) de�nable. The optimal (weighted) coloring problem is notLinEMSOL(�1;p) de�nable, cf. [Lau93].A labeled graph is a graph with labels associated with its vertices, such that eachvertex has exactly one label. A p-graph is a simple undirected loop-free labeledgraph with vertex labels in f1; 2; : : :; pg. An unlabeled graph is considered as a1-graph. In Section 3 we show that:Theorem2. Let p be a �xed integer. Every LinEMSOL(�1;p) problem on the classof P4-sparse p-graphs can be solved in time O(jV j + jEj) and the correspondingalgorithm can be derived constructively from its LinEMSOL(�1;p) de�nition. If themodular decomposition of the graph is given as input then the running time of thealgorithm is O(jV j).Note that Theorem 2 also holds for any subclass of the class of P4-sparse graphs,such as the classes of P4-reducible graphs and cographs.For example, in the terminology and numbering of [GJ79], all the followingproblems are LinEMSOL(�1;p) de�nable. So we have:Corollary3. The following problems can be solved in linear time on the class ofP4-sparse p-graphs (and any of its subclasses): vertex cover [GT1], dominating set[GT2], domatic number for �xed k [GT3], k-colorability for �xed k [GT4], partitioninto cliques for �xed k [GT15], clique [GT19], independent set [GT20] and inducedpath [GT23].In Section 3 we prove Theorem 2 using MSOL-translation schemes and theirinduced transductions. The idea is to present a graph G by a tree built over some ofits subgraphs (and called its modular decomposition) and to transfer the consideredoptimization problems on G into optimization problems on its modular decompo-sition. Since the modular decompositions of P4-sparse graphs can be formalized aslabeled partial 2-trees and can be constructed in linear time, and since LinEMSOLoptimization problems have linear algorithms on partial 2-trees (cf. [ALS91, CM93]),we obtain a proof of Theorem 2. The basic tool is here the MSOL de�nable trans-lation scheme, permitting a reduction of the optimization problems from graphs totheir modular decompositions, while preserving the LinEMSOL expressibility. Us-ing similar arguments Theorem 2 can be extended to the classes of (q; q�4) graphsand P4-tidy graphs. It is proved in [EHPR96] that the so called uniformly non-primitive 2-structures which are certain directed graphs with labeled edges, havepolynomial decision algorithms for problems expressible in MSOL without edgeset quanti�cations. Cographs are isomorphic to a subclass of this class. The proofmethod is the one we use for Theorem 2.In Section 4 we extend Theorem 2 to the class of graphs of bounded clique-width, �rst introduced by Courcelle et al. [CER93]. We recall the notions of graphoperations and clique-width presented in [CO99].We shall use three types of graph operations on p-graphs denoted �, �i;j, and�i!j . Informally, G1 � G2 is the disjoint union of the p-graphs G1 and G2, �i;j(G)is the p-graph obtained by adding to G undirected edges connecting all verticeslabeled i to all the vertices labeled j in G, and �i!j(G) is the p-graph obtainedby changing all the i labels to j labels in G. A formal de�nition of these graphoperations is given in Section 4.1.With every p-graph G one can associate an algebraic expression built usingoperations of the three types mentioned above which de�nes G. We call such an ex-pression a k-expression de�ning G, if all the labels in the expression are in f1; : : : ; kg.Clearly k is greater than or equal to p. Also, for every p-graph G, there is an n-expression which de�nes G, where n is the number of vertices of G. Let C(k) be3

the class of p-graphs which can be de�ned by k-expressions. The clique-width of ap-graph G, denoted cwd(G), is de�ned by: cwd(G) =Minfk : G 2 C(k)g.With these de�nitions we show:Theorem4. Let C be a class of p-graphs of clique-width at most k (i.e., C � C(k))such that there is a (known) O(f(jEj; jV j)) algorithm, which for each p-graph Gin C, constructs a k-expression de�ning it. Then every LinEMSOL(�1;p) problemon C can be solved in time O(f(jEj; jV j)). A corresponding algorithm can be e�ec-tively constructed from the logical formula describing the problem, and the parsingalgorithm for the class.In the statement of Theorem 4 we must assume that we know an e�cient pars-ing algorithm, because none is known for C(k) in general (there exist polynomialalgorithms in special cases). Theorem 4 applies to any class of graphs of boundedclique-width for which an e�cient parsing algorithm exists. There are many suchclasses. For example, the cliques, the cographs, and any class of graphs of treewidthat most k. We show that:Proposition5. (q; q�4) graphs and P4-tidy graphs have clique-width at most q and4 respectively, and for each (q; q�4) (P4-tidy) graph G, a q-expression (4-expression)de�ning it can be constructed in O(jV j+ jEj) time.From Theorem 4 and Proposition 5, we get a second proof of Theorem 2. This proofis based on graph operations and clique-width, and constructs algorithms for solvingLinEMSOL(�1;p) problems on P4-sparse graphs, di�erent from those constructedby the �rst proof of Theorem 2 mentioned above. Although Theorem 4 subsumesTheorem 2, we give a speci�c proof of Theorem 2 because it is more direct, hopefullyusable in other similar situations, and does not use the machinery of the Feferman-Vaught theorem used in the proof of Theorem 4. Theorem 4 is interesting by itsgenerality. Sections 3 and 4 can be read independently.Courcelle and Mosbah [CM93] also considered the logics MSOL(�2) andEMSOL(�2;p) (mentioned above, but with quanti�cations over subsets of edges al-lowed). They showed that Theorem 2 can be extended also for all the EMSOL(�2;p)optimization problems on each class of graphs of tree width at most k. However,our next result shows that this extension cannot be done for P4-tidy, (q; q � 4),P4-sparse, cographs and all graph classes which contain the cliques, provided thatP 6= NP.For (edge-)labeled graphs this is easy to see, since every graph can be presentedas a labeled clique with exactly the original edges labeled with a speci�c label. Butit is also true for unlabeled graphs, provided that P 6= NP on unary languages.We denote by P1 (NP1) the class of languages over one letter (also called tallylanguages), which are in P (NP). In Section 5 we show that:Theorem6. If P1 6= NP1 then there is an MSOL(�2) de�nable decision problemover the class of cliques which is not solvable in polynomial time.An extended abstract of this paper was presented in [CMR98].2 Background2.1 Graphs as logical structuresIn what follows, we will use the term graph for �nite nonempty undirected graphswithout self loops or multiple edges. We will use the term labeled graph for graphshaving labels which are associated with their vertices such that each vertex hasexactly one label. A p-graph is a labeled graph with (vertex) labels in f1; 2; : : :; pg.4

An unlabeled graph G will be considered as a 1-graph such that all the vertices ofG are labeled by 1.The following are the two most common (labeled) graph presentations, for logicallyoriented work:De�nition7 (The vocabularies �1 and �1;p). We denote by �1 the vocabularyfEg consisting of one binary relation symbol E. For a graph G, we denote by G(�1)the presentation of G as a logical structure hV;Ei, where V is the domain of thelogical structure which consists of the set of vertices of G and E is the binary relationcorresponding to the adjacency matrix of G.We denote by �1;p the vocabulary: E;U1; : : : ; Up, where p is any �xed integer. Fora p-graph G, we denote by G(�1;p) the presentation of G as a logical structurehV;E; U1; : : : ; Upi, where V and E are the same as above, and U1; : : : ; Up are theunary predicates corresponding to the labels of the vertices of G.Note that we use a vocabulary �1;p, for expressing properties of labeled graphs ingeneral. Such properties make no reference to labels larger than p, that may existin the considered graph.Remark. Certain structures of type �1;p do not represent p-graphs. Either becausethe predicates Ui do not form a partition of the domain, or because E is not sym-metric or both. A �rst order formula can express that a given structure actuallyrepresents a p-graph. We will only consider �1;p structures representing p-graphswithout any further notice.De�nition8 (The vocabularies �2 and �2;p). We denote by �2 the vocabularyfR;PE; PV g consisting of one binary relation symbol R, and two unary relationsymbols PE ; PV . For a graph G, we denote by G(�2) the presentation of G as a log-ical structure hV [E;R; PE; PV i, where the domain of the logical structure consistsof the set of vertices and edges of G, R is a binary relation, such that (e; v) is inR if and only if v is a vertex of G which is incident with the edge e of G, and PV(resp. PE) is a unary predicate such that v (resp. e) is in PV (resp. PE) if and onlyif v (resp. e) is a vertex (resp. an edge) of G.We denote by �2;p the vocabulary: fR;PE; PV ; U1; : : : ; Upg, where p is any �xedinteger. For an edge- and vertex-labeled graph G, we denote by G(�2;p) the presen-tation of G as a logical structure hV [E;R; PE; PV ; U1; : : : ; Upi, where R;PE; PVare as above, and U1; : : : ; Up are the unary predicates corresponding to the labelsof the vertices and edges of G.2.2 Monadic Second Order Logic decision and optimization problemsWe recall that Second Order Logic (SOL) is like �rst order logic, but allows also vari-ables and quanti�cation over relation variables of various but �xed arities. MonadicSecond Order Logic (MSOL) is the sub-logic of SOL where relation symbols arerestricted to be unary. More details on the de�nition of MSOL can be found in[Cou97, EF95, Pap94]. For a set variable X and a �rst order variable u, we denoteby X(u) the atomic formula indicating that u 2 X.Graphs are a special case of �nite structures. Therefore, before concentrating ongraphs, we start with the following de�nitions and facts concerning �nite struc-tures. In what follows we will be concerned only with �nite structures, thereforewhenever we use the term structure we mean �nite structure. Let � denote anyvocabulary consisting of a �nite set of relation symbols, and let K be any class of� -structures. We denote by Str(�) the class of all � -structures.De�nition9 (MSOL(�) decision problem over K). We say that a decisionproblem is an MSOL(�) decision problem over K, if it can be expressed in the5

following form: Given a � -structure A 2 K does A j= ' hold? where ' is a closedMSOL formula over � . Note that ' and K are not part of the problem instance,which consists just of A. In the case that the class K consists of all � -structures,K = Str(�), we will say that a problemwhich can be stated as above is anMSOL(�)decision problem.Example 1. The 3-colorability problem is an MSOL(�1) problem, since it can bestated as follows: Given a graph G, presented as a logical structure G(�1), doesG(�1) j= ' hold? where ' is the closed MSOL(�1) formula de�ned by:' � 9X1; X2; X3(Partition(X1; X2; X3)^IndSet(X1)^IndSet(X2)^IndSet(X3))where Partition(X1; X2; X3) is de�ned by:Partition(X1; X2; X3) � 8v(X1(v) _X2(v) _X3(v))^:9u((X1(u) ^X2(u)) _ (X1(u) ^X3(u))_(X2(u) ^X3(u)))and Indset(X) is de�ned by:Indset(X) � 8u; v((X(u) ^X(v)) �! :E(u; v))Let f1; f2; : : : ; fm be m function symbols for some �xed integer m. For a set variableXi and an assignment z we use jz(Xi)jj as a short notation for:Pa2z(Xi) fj(a). Wedenote by jAj the cardinality of a �nite set A.De�nition10 (LinEMSOL(�) optimization problems over K). We say thatan optimization problem P is a LinEMSOL(�) optimization problem over K, ifit can be expressed in the following form: Given a � -structure A 2 K, and mevaluation functions f1; : : : ; fm associating integer values to the elements of A, �ndan assignment z to the free variables in � such that:P1 � i � l1 � j � maijjz(Xi)jj = optf P1 � i � l1 � j � maijjz0(Xi)jj : hA; z0i j= �(X1; : : : ; Xl)gwhere � is an MSOL(�) formula having free set variables X1; : : : ; Xl, opt is eitherMin or Max, and faij : 1 � i � l; 1 � j � mg are any integers. Since thecoe�cients aij can be negative we shall only deal with Max: a minimization isobtained from a maximization with negated coe�cients. Note that �(X1; : : : ; Xl);Kand the constants faijg are not part of the problem instance, which consists just ofA and the evaluation functions f1; : : : ; fm.For any assignment z to the free variables of � which satis�es the above condition,we say that z realizes a solution to the problem P on A with evaluation functionsf1; : : : ; fm.In the case that the class K consists of all the � -structures, K = Str(�), we denote aLinEMSOL(�) optimization problem overK shortly as a LinEMSOL(�) problem.Note that the syntax of every LinEMSOL(�) problem is completely de�ned by � ,�(X1; : : : ; Xl), the constants faijg and m.Example 2. The maximum weight clique problem is to �nd for a given graph G,with weights assigned to its vertices, a clique C of G such that the total weight ofthe vertices of C is maximum. This problem is a LinEMSOL(�1) problem sinceit can be expressed as follows: Given a graph G presented as a �1-structure, G(�1)and one evaluation function f1 associating integer weight values to the vertices ofG(�1), �nd an assignment z to the free set variable X1 in � such that:jz(X1)j1 =Maxfjz0(X1)j1 : hG(�1); z0i j= �(X1)g6

where �(X1) is de�ned by:�(X1) = 8u; v((X1(v) ^X1(u) ^ u 6= v) �! E(u; v))Remark. Every MSOL(�) decision problem can be expressed also as aLinEMSOL(�)) optimization problem. Thus, in the sequel we will be concernedonly with LinEMSOL(�) optimization problems.2.3 MSOL translation schemes and transductionsIn this section we de�ne the notion of translation scheme. The idea is to de�ne a newstructure over vocabulary � from a given structure over vocabulary � by means of a�nite set of logical formulas ', 1; : : : ; m over � . The formula ' de�nes the domainof the new structure and each relation Ri of arity k of the new structure is de�nedby the formula i with k free variables. This notion is called \interpretatoin" butwe prefer the word \translation" to focus on the syntactic nature of the de�niton.The classical de�nition for First Order Logic (see [EF95]) is addapted for MSOL.De�nition11 (Translation scheme �). Let � and � be two vocabularies, let� = fR1; : : : ; Rmg and let �(Ri) be the arity of Ri. Let � = h'; 1; : : : ; mi beMSOL formulas over � . We say that � is well formed for � over � if ' has onefree �rst order variable and no free set variables, and for 1 � i � m, each i has�(Ri) free �rst order variables and no free set variables. Such a � = h'; 1; : : : ; miis called a � -�-translation scheme. If ' is true and each i is quanti�er free, � iscalled quanti�er free.In the following text we denote a � -�-translation scheme shortly as a translationscheme if � and � are clear from the context. With a translation scheme � one cannaturally associate a (partial) function �� from � -structures to �-structures. Thisfunction is called a transduction from � -structures to �-structures. For more generalcases see [Cou94a, Cou97, Mak97, EO97].De�nition12 (The induced transduction ��). Let A be a � -structure, � be a� -�-translation scheme and let A be the domain of A. The structure A� is de�nedas follows:(i) The domain of A� is the set A� = fa 2 A : A j= '(a)g(ii) The interpretation of Ri in A� is the setA�(Ri) = f�a 2 A�(Ri)� : A j= i(�a)gNote that A� is a �-structure of cardinality at most jAj.(iii) The partial function �� : Str(�) �! Str(�) is de�ned by ��(A) = A�. Notethat ��(A) is de�ned if and only if A j= 9x'(x). In particular, if � is quanti�erfree then �� is a total function.With a translation scheme � we can also naturally associate a function �] fromMSOL(�)-formulas to MSOL(�)-formulas. This function is called the backwardstranslation associated with �.De�nition13 (The backwards translation �]). Let � be an MSOL(�)-formula and let � be a � -�-translation scheme . The formula �� is de�ned inductivelyas follows:(i) For � of the form x1 = x2, �� is de�ned as x1 = x2 ^'(x1) ^ '(x2).(ii) For Ri 2 � and � of the form Ri(x1; : : : ; xm), �� is de�ned as i(x1; : : : ; xm) ^Vi '(xi). 7

(iii) For a set variable U and a �rst order variable y, if � is U (y), then �� is U (y) ^'(y). Note that in our notation U (y) is the same as y 2 U .(iv) For the boolean connectives the translation distributes, i.e. if � is of the form(�1 _ �2) then �� is de�ned as (�1� _ �2�) and if � is :�1 then �� is :�1�, andsimilarly for ^.(v) For the existential quanti�er of �rst order variables, we use relativization, i.e. if� is of the form 9y�1, then �� is de�ned as 9y('(y) ^ �1�).(vi) For the existential quanti�er of a set variable U the translation distributes, i.e.,if � is of the form 9U�1 then �� is de�ned as 9U (�1�).(vii) The function �] :MSOL(�) �!MSOL(�) is de�ned by �](�) = ��^�', where�' is the relativization of the free set variables in �, say X1; : : : ; Xl, de�ned by:�' = ^1�i�l 8y(Xi(y) ! '(y)):If Phi is quanti�er free then (since �' is logically equivalent to true) �](�) = ��.From De�nition 13 it follows that:Observation14. For each translation scheme �, �](�) 2 MSOL provided � 2MSOL. If � is quanti�er free then �](�) has the same quanti�er depth as �.The following fundamental property of translation schemes follows from the abovede�nitions.Theorem15 ([EF95]). Let � = h�; 1; : : : ; mi be a � -�-translation scheme, Aa � -structure such that ��(A) is de�ned, and let �(v1; : : : ; vn; X1; : : : ; Xl) be anMSOL(�)-formula having n free �rst order variables v1; : : : ; vn and l free set vari-ables X1; : : : ; Xl . Then for every assignment z to the free variables of � such thatfor every element a = z(vi) A j= '(a), 1 � i � n, and for every element b 2 z(Xj)A j= '(b), 1 � j � l, we have that:hA; zi j= �](�)(v1; : : : ; vn; X1; : : : ; Xl)() h��(A); zi j= �(v1; : : : ; vn; X1; : : : ; Xl):With a translation scheme � we can also naturally associate a function �4 fromLinEMSOL(�) problems to LinEMSOL(�) problems.De�nition16 (The backwards translation �4). Let P be a LinEMSOL(�)optimization problem given by �, the MSOL(�) formula �(X1; : : : ; Xl) having freeset variables X1; : : : ; Xl, the (possibly negative) constants faijg and m (the numberof evaluation functions). Let � be a � -�-translation scheme.(i) The optimization problem P� is de�ned by � , the MSOL(�) formula�](�(X1; : : : ; Xl)) having free set variables X1; : : : ; Xl (the same as of �), theconstants faijg and m (the number of evaluation functions).(ii) The function �4 : LinEMSOL(�) �! LinEMSOL(�) is de�ned by �4(P) =P�.Theorem17. Let P be a LinEMSOL(�) optimization problem, let � =h�; 1; : : : ; mi be a � -�-translation scheme, and let A be a � -structure such that��(A) is de�ned. Then an assignment z realizes a solution to the problem �4(P)on A with evaluation functions f1; : : : ; fm if and only if z realizes a solution to theproblem P on ��(A) with evaluation functions f1; : : : ; fm restricted to the domainof ��(A). 8

Proof: Let �(X1; : : : ; Xl) be theMSOL(�) formula used in the de�nition of P , andlet z be an assignment which realizes a solution to the problem �4(P) on A withevaluation functions f1; : : : ; fm. Then the following condition holds:P1 � i � l1 � j � maijjz(Xi)jj =Maxf P1 � i � l1 � j � maijjz0(Xi)jj : hA; z0i j= �](�)(X1; : : : ; Xl)gBy the above condition it follows that for every element a 2 z(Xi), 1 � i � l,A j= '(a). Thus, from Theorem 15:Maxf P1 � i � l1 � j � maijjz0(Xi)jj : hA; z0i j= �](�)(X1; : : : ; Xl)g =Maxf P1 � i � l1 � j � maijjz00(Xi)jj : h��(A); z00i j= �(X1; : : : ; Xl)gHence, z realizes a solution to the problem P on ��(A) with evaluation functionsf1; : : : ; fm restricted to the domain of ��(A). The other direction follows by a similarargument. 22.4 The modular decomposition of P4-sparse graphsA set M of vertices of a graph G is called a module of G if every vertex outside Mis either adjacent to all vertices in M or to none of them. A module M is calledstrong, if for any moduleM1 either M \M1 = ;, or one module contains the other.The modular decomposition of a graph G is based on a tree denoted by T (G). Thenodes of T (G) are (in one-to-one correspondence with) the strong modules of Gand a module M is descendant of module M 0 in T (G) i� M � M 0. Consequentlythe leaves of T (G) are the vertices of G and the strong module corresponding to anode of T (G) consists of all leaves of T (G) that are descendants of that node. Eachinternal node is labeled by P , S, or N , as explained in Proposition 18. It can beshown that T (G) is unique up to isomorphism. More details on how the tree T (G)is constructed can be found in [GV97, BM83, CH94].Let h be an internal node of T (G). We denote by M (h) the module correspondingto h which consists of the set of vertices of G of the subtree of T (G) rooted at h.Let fh1; : : : ; hrg be the set of sons of h in T (G). We denote by G(h) = hV (h); E(h)ithe representative graph of the module M (h) de�ned by: V (h) = fh1; : : : ; hrg andE(h) = f(hi; hj) j 9u; v(u 2M (hi) ^ v 2M (hj) ^ (u; v) 2 E)g:Note that by the de�nition of a module, if a vertex ofM (hi) is adjacent to a vertexof M (hj) then every vertex of M (hi) will be adjacent to every vertex of M (hj).The modular decomposition M (G) of G is the pair consisting of T (G) and themapping that associates with each node h of T (G) the graph G(h) (which is actuallyisomorphic to a subgraph of G).It is clear that G can be reconstructed from M (G). In particular, the verticesof G are the leaves of T (G) and there is an edge between x and y i� x and y haveancestors h and h0 which are sons of a same node k, and such that h and h0 arelinked by an edge in E(k). This de�nition is expressible by a translation schemetaking as input T (G) augmented with the edges of E(h) for each internal node h.From the construction of T (G) it follows that:Proposition18. Let G be any graph and let h be an internal node of T (G). IfG(h) is a complete graph then h is labeled S, if G(h) is edgeless then h is labeledP , otherwise h is labeled N . 9

Recall that the neighborhood Neigh(v) of a vertex v of G is de�ned as the set ofvertices of G adjacent to v, i.e.: Neigh(v) = fuj(u; v) 2 Eg.De�nition19 (Prime spider). A graph G is a prime spider if the vertex set ofG can be partitioned into sets D;K and R such that:(i) D is a stable set (i.e., no two vertices in D are adjacent), K is a clique andjDj = jKj � 2.(ii) R contains at most one vertex, i.e. jRj � 1, and if R contains one vertex sayr, then r is adjacent to all the vertices in K and is not adjacent to any of thevertices in D.(iii) There exists a bijection f between D andK such that either Neigh(x) = ff(x)gfor all vertices x in D or else Neigh(x) = K � ff(x)g for all vertices x in D.The triple (D;K;R) is called the spider partition of G.Note that the edge-complement of a prime spider is also a prime spider. The fol-lowing proposition is from [GV97] based on [JO92b]:Proposition20. Let G be a P4-sparse graph and let h be an internal N -node ofT (G). Then G(h) is isomorphic to a prime spider.The following proposition is from [GRT97]:Proposition21 (Giakoumakis, Roussel and Thuillier). Let G be a P4-tidygraph and let h be an internal N -node of T (G). Then G(h) is either isomorphicto a prime spider, to a cycle of �ve vertices C5, to a path of �ve vertices P5, or tothe edge-complement of a path of �ve vertices P5.The following proposition is from [BO95]:Proposition22 (Babel and Olariu). Let G be a (q; q� 4) graph and let h be aninternal N -node of T (G). Then G(h) is either isomorphic to a prime spider, or toa graph with at most q vertices.3 Linear algorithms for optimization problems on P4-sparsegraphsOur concern in this section is to reduce an optimization problem on a P4-sparsegraph G to one (of same logical structure) on M (G), e�ciently solvable. We needthus an e�cient presentation of modular decompositions of P4-sparse graphs. A�rst obvious presentation, is to take T (G) and to add the edges of the sets E(h)(perhaps with a special marking to distinguish them from those of T (G).) However,these graphs will have too many edges. Our objective is to obtain graphs with "fewedges", viz. partial k-trees. For the notion of partial k-tree see, e.g. [Bod98].If a node h of T (G) is an S-node, we mark it as such, and we omit the edgeslinking its sons. The marking will indicate the existence of the missing edges, andwill be used by a translation scheme which translates M (G) into G. If G(h) isa prime spider, we present it by some colors and very few edges as indicated inthe next de�nition. We will consider P4-sparse p-graphs i.e, P4-sparse graphs withvertices labeled in 1; : : : ; p.De�nition23 (The 2-tree modular decomposition of G: 2-tree(G)). LetG be a P4-sparse p-graph. We denote by 2-tree(G) the 2-tree modular decompositionof G constructed from T (G) by adding more edges and labels to T (G) according tothe following rule: 10

{ Let h be an N -node of G, let G(h) be the representative graph of h which isisomorphic to a prime spider by Proposition 20 and let (D;K;R) be the spiderpartition of G(h). Then:� For every vertex x in D add to T (G) the edge: (x; f(x)), where f is thebijection from D to K de�ned in De�nition 19.� If Neigh(x) = ff(x)g for all vertices x in D mark the N -node h of T (G) asa red N -node. Otherwise, mark h as a black N -node.� For every vertex x in D add a yellow label to x. For every vertex y in Kadd a blue label to y. For the one vertex r in R (if it exists) add a whitelabel to r.It is easy to see that:Fact 24. For every P4-sparse p-graph G, 2-tree(G) is a partial 2-tree.Let G be a p-graph. Recall that the vocabulary �1;p consists of a binary relationsymbol E and a �nite set of unary predicate symbols U1; : : : ; Up, used to labelthe vertices of the p-graph. In order to present the 2-tree(G) as a logical struc-ture we shall use the vocabulary �1;p+10 which has p+ 10 unary predicate symbolsU1; : : : ; Up+10 such that U1; : : : ; Up are used to label the leaves of T (G) in thesame way as the vertices of the p-graph G, and Up+1 : : :Up+10, are denoted byProot; Pleaf ; PS ; PP ; PN ; Pred; Pblack; Pblue; Pyellow and Pwhite, respectively.The meaning of the last ten unary predicates mentioned above is as follows:{ Proot(x) is true if and only if x is the root of 2-tree(G). Note that using thispredicate we can express that u is an ancestor of v in T (G) or vice versa althoughT (G) is presented as an undirected graph over the vocabulary �1;p+10.{ Pleaf (x) is true if and only if x is a leaf of the tree T (G).{ PS(x) (resp. PP (x), PN (x)) is true if and only if x is an S-node (resp. P -node,N -node) of the tree T (G).{ Pred(x) (resp. Pblack(x); Pblue(x); Pyellow(x); Pwhite(x)) is true if and only if xis marked red (resp. black, blue, yellow, white) in 2-tree(G).Remark. Some vertices may satisfy more than one of the ten unary predicates de-�ned above. Hence, a graph presented over �1;p+10 may have vertices with morethan one label. Since we require that labeled graphs have at most one label foreach vertex, we can easily extend �1;p+10 by adding more unary predicates, suchthat each vertex will have at most one label. For simplicity we do not specify thisextension of �1;p+10.Theorem25. Let p be any integer. There exists a translation scheme �1 such thatfor every P4-sparse p-graph G we have ��1(2-tree(G)(�1;p+10)) �= G(�1;p).Note that �= denotes isomorphism of logical structures. Theorem 25 states thatthere exists a MSOL translation scheme which reconstructs the original P4-sparsegraph G from its partial 2-tree presentation. The proof follows immediately fromthe de�nition of 2-tree(G).Proposition26. Let G = hV;Ei be any P4-sparse p-graph. Then 2-tree(G) can beconstructed in O(jV j+ jEj) time.Proof: Let G be a P4-sparse p-graph. In [GV97] it is shown how to construct T (G)in O(jV j + jEj) time. From de�nition 23 it is easy to see that 2-tree(G) can beconstructed from T (G) in time linear in the number of nodes of T (G). But sincethe number of nodes of T (G) is O(jV j) (as proved in [Spi92]), we get that the totalconstruction of 2-tree(G) takes O(jV j+ jEj) time. 211

The following theorem is from [Cou90, CM93, ALS91] using the linear time algo-rithm (cf. [Bod96]) for constructing tree-decompositions of partial k-trees.Theorem27. Let p and k be �xed integers. Every LinEMSOL(�1;p) optimiza-tion problem on the class of partial k-trees can be solved in O(jV j) time and thecorresponding algorithm can be derived constructively from its LinEMSOL(�1;p)de�nition.Theorem 27 holds also for the richer logical languages based on �2. Note thatTheorem 27 has two di�erent proofs, one of [Cou90, CM93] and the other of[ALS91], which construct di�erent algorithms for solving LinEMSOL(�1;p) (andalso LinEMSOL(�2;p)) problems on the class of partial k-trees. We will show that:Theorem 2. Let p be a �xed integer. Every LinEMSOL(�1;p) problem on theclass of P4-sparse p-graphs can be solved in time O(jV j+ jEj) and the correspondingalgorithm can be derived constructively from its LinEMSOL(�1;p) de�nition. If themodular decomposition of the graph is given as input then the running time of thealgorithm is O(jV j).Proof: Let P be a LinEMSOL(�1;p) optimization problem on the class of P4-sparsep-graphs which is expressed as follows: Given a P4-sparse p-graph G presented over�1;p, andm evaluation functions f1; : : : ; fm, �nd an assignment z to the free variablesin � such that:P1 � i � l1 � j � maijjz(Xi)jj =Maxf P1 � i � l1 � j � maijjz0(Xi)jj : hG(�1;p); z0i j= �(X1; : : : ; Xl)gwhere � is an MSOL(�1;p) formula having free set variables X1; : : : ; Xl, and faij :1 � i � l; 1 � j � mg are (possibly negative) integers. Recall that for an assignmentz as above we say that it realizes a solution to the problem P on G with evaluationfunctions f1; : : : ; fm.We will solve the problem P in O(jV j+ jEj) time by the following algorithm:(i) Check whether the input p-graph G is a P4-sparse graph using the algorithm of[GV97]. If G is not a P4-sparse graph stop with a \not legal input" answer.(ii) Construct 2-tree(G) and present it over �1;p+10.(iii) Use the algorithm of [CM93] or the algorithm of [ALS91] (Theorem 27), to �ndan assignment z to the free variables in �]1(�) which realizes a solution to theproblem �41 (P) on 2-tree(G) with evaluation functions f1; : : : ; fm. By Theo-rem 25 ��1(2-tree(G)(�1;p+10)) �= G(�1;p). Hence, from Theorem 17 it followsthat z also realizes a solution to the problem P on G with evaluation functionsf1; : : : ; fm.Step (i) can be done inO(jV j+jEj) time as established in [GV97], and by Proposition26 step (ii) can be done in O(jV j+ jEj) time. By Fact 24 and Theorem 27 step (iii)can be done in O(jV j) time, since the number of nodes and edges in 2-tree(G) isO(jV j). Hence the running time of the algorithm is O(jV j + jEj). If the modulardecomposition T (G) of G is given as an input then the running time of the algorithmis O(jV j), since step (i) is given as input and step (ii) can be done in O(jV j) time.212

4 Linear algorithms for optimization problems on graphs ofbounded clique-width4.1 Graph operations and clique-widthFor p-graphs G;H such that G = hV;E; V1; : : : ; Vpi and H = hV 0; E0; V 01 ; : : : ; V 0piand V \ V 0 = ; (if this is not the case then replace H with a disjoint copy of H),we denote by G�H, the disjoint union of G and H such that:G�H = hV [V 0; E [E0; V1 [V 01 ; : : : ; Vp [V 0pi:For a p-graph G as above we denote by �i;j(G), where i 6= j, the p-graph obtainedby connecting all the vertices labeled i to all the vertices labeled j in G. Formally:�i;j(G) = hV;E0; V1; : : : ; Vpi ; whereE0 = E [f(u; v) : u 2 Vi; v 2 Vjg:For a p-graph G as above we denote by �i!j(G) the renaming of i into j in G, i 6= j,such that: �i!j(G) = hV;E; V 01; : : : ; V 0pi; whereV 0i = ;; V 0j = Vj [Vi; and V 0q = Vq for q 6= i; j:These graph operations have been introduced in [CER93] for characterizing graphgrammars. For every vertex v of a graph G and i 2 f1; : : : ; pg, we denote by i(v)the p-graph consisting of one vertex v labeled by i.Example 3. A clique with four vertices u; v; w; x can be expressed as:�2!1(�1;2(2(u)� �2!1(�1;2(2(v) � �2!1(�1;2(1(w)� 2(x))))))):Note the \temporary use" of the label 2.With every p-graph G one can associate an algebraic expression built using opera-tions of the three types mentioned above which de�nes G. We call such an expressiona k-expression de�ning G, if all the labels in the expression are in f1; : : : ; kg. Clearlyk � p. Also, for every p-graph G, there is an n-expression which de�nes G, where nis the number of vertices of G.De�nition28 (Clique-width). Let C(k) be the class of p-graphs which can be de-�ned by k-expressions. The clique-width of a p-graph G, denoted cwd(G), is de�nedby: cwd(G) =Minfk : G 2 C(k)g.The clique-width is a complexity measure on graphs somewhat similar to treewidth,which yields e�cient graph algorithms provided the graph is given with its k-expression (for �xed k). A related notion has been introduced by Wanke [Wan94] inconnection with graph grammars. C(1) is the class of edgeless graphs. The graphs inC(2) are exactly the cographs, cf. [CO99]. They are de�nable from isolated verticesby �, and the product
 de�ned as:G
H = �2!1(�1;2(G� �1!2(H))):Trees have clique-width at most 3 (cf. [CO99]).Problem29. Find a characterization of graphs of clique width at most k; k � 3.Do there exist polynomial time algorithms for recognizing the classesC(k); k � 4?A polynomial time algorithm for recognizing the class C(3) is presented in [CHLRR].13

Lemma30. A p-graph with underlying unlabeled graph of clique{width at most khas clique{width at most p � k.Proof:[Sketch]. Let t be a k-expression for the underlying unlabeled graph. Let c(v)denote the label in f1; : : : ; pg of vertex v. A label i used in the subexpression i(v) oft is replaced by (i; c(v)). Of course pairs (i; j) can be coded as integer labels between1 and p � k in such a way that labels 1; : : : ; p correspond to pairs (1; 1); ::::; (1; p).The additional information c(v) can be maintained in the edge creations (i.e., �operations) and label renamings (i.e., � operations). Thus an edge creation will bereplaced by p � p edge creations, in order to handle the additional labels. 24.2 P4-tidy graphs are of cwd � 4 and (q;q� 4) graphs are of cwd � qLet G and H be two disjoint graphs and let v be a vertex of G. We denote byG[H=v] the graphK obtained by the substitution in G ofH for v. Formally,V (K) =V (G) [V (H)� fvg, andE(K) = E(H) [fe : e 2 E(G) and e is not incident with vg [f(u;w) : u 2 V (H); w 2 V (G) and w is adjacent to v in Gg.Proposition31. For all disjoint graphs G,H, and for every vertex v of G,cwd(G[H=v]) =Maxfcwd(G); cwd(H)g.Proof: Let q = Maxfcwd(G); cwd(H)g and let h and g be q-expressions de�ningH and G respectively. Since H is an unlabeled graph, it can be considered as a 1-graph such that all vertices of H are labeled by 1. Hence the q-expression h �nallyrenames all labels into 1. The q-expression g must contain a unique subexpressionof the form i(v) corresponding to the initial label of v in the construction of G. Byinduction on the structure of g, it can be shown that the q-expression obtained byreplacing in g the subexpression i(v) by the q-expression �1!i(h) de�nes G[H=v].We have shown that cwd(G[H=v]) � q.If cwd(G[H=v]) < q then there is a q1-expression f de�ning G[H=v], where q1 < q.From f we can extract a q1-expression for G by taking all the vertices of V (G)�fvgin f and taking one vertex of f corresponding to a vertex of H (chosen arbitrarily)and omitting all the other vertices occurring in f . Here by omitting a vertex u froman expression t we mean: replace i(u) in t with ; then replace every �(;) and every�(;) sub-expression of t with ;, and �nally replace a sub-expression of t of the form; � t1 or t1 � ; with t1.Likewise we can extract from f a q1-expression for H by taking only the vertices off corresponding to vertices of H and omitting all the other vertices. It follows thatMaxfcwd(G); cwd(H)g= q1 < q, a contradiction. 2Recall that for any graph G, we denote by T (G) the tree obtained by the modulardecomposition of G, and for each internal node h of T (G) we denote by G(h) therepresentative graph of h de�ned in Section 2.4.Proposition32. For every graph G, cwd(G) = Maxfcwd(H) : H is a represen-tative graph of an internal node h in the modular decomposition of Gg.Proof: Using vertex substitutions we can build an expression which de�nes G, bythe following procedure. Let r be the root of T (G) and let R denote the singletonhaving one vertex r. Start by the expression R[G(r)=r], substituting the represen-tative graph G(r) for the single vertex r of R. Then scan T (G) in pre-order andwhenever an internal node h is reached substitute K[G(h)=h] for h, where K is thegraph de�ned by the sequence of substitutions made so far. From the de�nitions14

of modular decomposition and representative graphs, it follows that the expressionconstructed by the above procedure de�nes the graph G, as a sequence of substi-tutions starting from the singleton R. The claim follows from Proposition 31, sincecwd(R) = 1 and all the graphs substituted in the expression constructed above arerepresentative graphs of internal nodes appearing in T (G). 2Proposition33. For every prime spider G, cwd(G) � 4.Proof: Let G be a prime spider and let (D;K;R) be the spider partition of G. LetD = fd1; : : : ; dmg, K = fk1; : : : ; kmg and let R = frg. By the de�nition of a primespider either Neigh(di) = ki or Neigh(di) = K � fkig, for 1 � i � m. In whatfollows we assume that Neigh(di) = K�fkig, for 1 � i � m, (the other case can behandled similarly). For 1 � i � m, let ti be the expression de�ned by the followinginductive de�nition:(i) t1 = 2(k1)� 1(d1)(ii) ti = �3!1(�4!2(�2;4(�1;4(�2;3(3(di) � 4(ki) � ti�1)))).Let 2 � i � m, let Di = fd1; : : : ; dig and let Ki = fk1; : : : ; kig. We show byinduction on i that the expression ti de�nes the 2-graph which is the subgraph ofG induced by Di [Ki, such that all the vertices in Di are labeled by 1 and all thevertices in Ki are labeled by 2. The claim trivially holds for i = 2. Assume that theclaim holds for i = j � 1, tj is constructed from tj�1 by adding the two vertices djand kj, labeling them by 3 and 4 respectively, and then adding edges as follows:{ Add edges between all the vertices labeled 3 to all the vertices labeled 2. Thiswill add edges connecting dj to all the vertices in Kj�1, which by the inductivehypothesis all have label 2.{ Add edges between all the vertices labeled 4 to all the vertices labeled 1. Thiswill add edges connecting kj to all the vertices in Dj�1, which by the inductivehypothesis all have label 1.{ Add edges between all the vertices labeled 4 to all the vertices labeled 2. Thiswill add edges connecting kj to all the vertices in Kj�1, which by the inductivehypothesis all have label 2.Then as a last step all the vertices labeled by 4 (i.e., kj) are relabeled with 2 andall the vertices labeled by 3 (i.e., dj) are relabeled with 1. Clearly, all the verticesof Dj are labeled with 1 and all the vertices of Kj are labeled with 2. By theinductive hypothesis tj�1 de�nes the subgraph of G induced by Dj�1[Kj�1. Sincethe subgraph of G induced by Dj [Kj can be obtained from the subgraph of Ginduced by Dj�1[Kj�1, by adding edges according to the above rules, we concludethat the claim holds also for i = j. Hence the expression tm de�nes the subgraph ofG induced by D [K. G can be obtained from its subgraph induced by D [K byadding the vertex r and connecting it to all the vertices in K. This can be done bythe following expression g:g = �2!1(�3!1(�2;3(3(r)� tm)))The claim of the proposition follows since g is a 4-expression which de�nes G. 2Proposition 5. (q; q � 4) graphs and P4-tidy graphs have clique-width at most qand 4 respectively, and for each (q; q � 4) (P4-tidy) graph G, a q-expression (4-expression) de�ning it can be constructed in O(jV j+ jEj) time.15

Proof:We prove the proposition for P4-tidy graphs. The proof for (q; q�4) graphsis along the same lines using Proposition 22 instead of Proposition 21. Let G be aP4-tidy graph and let T (G) be the tree obtained by the modular decomposition ofG. By Proposition 32, in order to show that cwd(G) � 4 it su�ces to show thatfor each internal node h of T (G), cwd(G(h)) � 4, where G(h) is the representativegraph of h in T (G). If h is a P -node (S-node) then G(h) is an edgeless graph (aclique), and has clique-width equal to 1 (2). If h is an N -node then by Proposition21 G(h) is either a prime spider, a cycle of �ve vertices C5, a path of �ve verticesP5 or its complement P5. Since C5, P5, and P5 have cwd � 4, and prime spidershave cwd � 4 by Proposition 33, we have shown that cwd(G) � 4. A 4-expressionde�ning G can be constructed in linear time as follows:(i) Construct the modular decomposition of G, T (G) in time O(jV j+ jEj) as shownin [GV97].(ii) From the modular decomposition T (G) construct an expression consisting of asequence of vertex substitutions which de�nes G, as follows from the proof ofProposition 32. Since the number of vertices in T (G) is O(jV j) (as proved in[Spi92]), this step can be done in time O(jV j+ jEj).(iii) Convert the expression of vertex substitutions obtained in the previous step,to a 4-expression for G as follows from Proposition 31. This step can be donein time O(jV j+ jEj), since each graph H used in the substitutions is either anedgeless graph, a clique, a C5 cycle, a P5 path, its complement P5, or a primespider for which a 4-expression can be constructed in time O(jV (H)j+ jE(H)j)as can be shown easily for the �rst �ve cases and as shown in the proof ofProposition 33 for the case of prime spiders. 24.3 The Feferman-Vaught TheoremIn the proof of Theorem 4 we shall use a version of the Feferman-Vaught Theorem,[FV59] adapted toMSOL. It is not clear who observed �rst that this adaptation toMSOL is true, but it is already in [L�au68, She75] and follows from [Fef57, Ehr61].For a good exposition, cf. [Gur79, Gur85].We review some notation from [CM93].De�nition34. Let A be a � -structure, let A be the domain of A and let ' be aMSOL(�)-formula with free set variables X1; : : : ; Xn. We denote by sat(A; ') theset of n-tuples of subsets of A for which ' holds in A. Formally:sat(A; ') = f(D1; : : : ; Dn) : Di � A; (A; D1; : : : ; Dn) j= '(X1; : : : ; Xn)g:The following is a special case of a classical result, for example see [EF95].Lemma35. Let p; h and n be �xed non-negative integers. Then there are �nitelymany MSOL(�1;p)-formulas with free variables in fX1; : : : ; Xng of quanti�er depth� h in the language expressing properties of p-graphs, up to tautological equivalence.Lemma36. For each p, each operation f 2 f�i!j ; �i;j : i; j 2 f1; : : : ; pg; i 6= jgover p-graphs can be expressed by a quanti�er free translation scheme �, i.e., �� = f .Hence, for every MSOL(�1;p) formula �, and for every p-graph G presented over�1;p, sat(f(G); �) = sat(G;�](�)):Proof: Immediate from the de�nitions of �i!j , and �i;j and Theorem 15. 216

For any set D we denote by P(D) the power set of D, i.e., the set of all subsetsof D. Let E;F be two subsets of D such that E \ F = ;, let A � P(E)n, and letB � P(F)n (we call such A and B separated). We de�ne A�B by:A�B = f(D1 [D01; : : : ; Dn [D0n) : (D1; : : : ; Dn) 2 A; (D01; : : : ; D0n) 2 B)g:Theorem37 (Feferman-Vaught for MSOL). For each pand for every MSOL(�1;p) formula � with free variables X1; : : : ; Xn, two lists ofMSOL(�1;p) formulas '1; : : : ; 'm and 1; : : : ; m can be constructed such that allthe formulas have the same free variables as � and have quanti�er depth no largerthan the quanti�er depth of �, and for every two p-graphs G and H presented over�1;p such that V (G) \ V (H) = ;,sat(G�H; �) = [1�i�m sat(G;'i)�sat(H; i):Proof: Immediate reformulation of the result by Feferman-Vaught as discussed in[Gur85]. The result can also be proved directly using pebble games for MSOL. 2A more sophisticated construction where the union is disjoint can be derived as inLemma 2.4 of [CM93] but is not needed here.4.4 The linear time algorithmsThe main ideas for proving Theorem 4 are as follows:(i) If G is a graph de�ned by a k-expression g, then the set sat(G;') can becomputed by induction on the structure of g, with the help of auxiliary setssat(G0;), for �nitely many formulas , and �nitely many graphs G0 where thegraphs G0 are de�ned by subexpressions of g. Here we use the Feferman-VaughtTheorem (see Theorem 37) and Lemma 36.(ii) A value h(sat(G;')) can be computed by the same induction on g, where h isa homomorphism (in some sense as de�ned below).(iii) LinEMSOL(�1;p) problems fall in the framework of computing h(sat(G;')) forwell-chosen functions h.Let G be a graph, let f1; : : : ; fm be m evaluation functions associating integervalues to the vertices of G, let D1; : : : ; Dl � V (G) and leth(D1; : : : ; Dl) = P1 � i � l1 � j � maij jDijjwhere faij : 1 � i � l; 1 � j � mg are any integers, and jDijj (see Section 2.2) isa short notation for Pa2Di fj(a). For A � P(V (G))l, letMax h(A) =Maxfh(D1; : : : ; Dl) : (D1; : : : ; Dl) 2 AgIt is clear that for separated A and BMax h(A�B) =Max h(A) +Max h(B) (1)and for general A and B:Max h(A [B) =MaxfMax h(A); Max h(B)g: (2)From De�nition 10 it follows that a LinEMSOL(�1;p) optimization problem over aclass of graphs K can be formulated as the computation of Max h(sat(G; �)) for a17

given graph G 2 K presented over �1;p, for �xed p, where � is a �xed MSOL(�1;p)formula.For each k-expression g we denote by Tree(g) the labeled tree correspondingto g. The leaves of Tree(g) are the singletons in g (the basic graphs) labeled bytheir initial label from f1; : : : ; kg, and the internal nodes of Tree(g) correspond tothe operations appearing in g. For each internal node x of Tree(g), we denote byGraph(x) the k-graph de�ned by the k-expression corresponding to the subtree ofTree(g) rooted at x.We are now ready to prove Theorem 4, which we restate for convenience.Theorem 4. Let C be a class of p-graphs of clique-width at most k, C � C(k),such that there is a (known) O(f(jEj; jV j)) algorithm, which for each p-graph G inC, constructs a k-expression de�ning it. Then every LinEMSOL(�1;p) problem onC can be solved in time O(f(jEj; jV j)). A corresponding algorithm can be e�ectivelyconstructed from the logical formula describing the problem, and the parsing algo-rithm for the class.Proof: Let P be a LinEMSOL(�1;p) optimization problem over a class of p-graphs C � C(k). As mentioned above P can be formulated as the computationof Max h(sat(G; �)) for a given p-graph G 2 C presented over �1;p. Since G 2 Cthere is a k-expression g which de�nes G. By Lemma 36 and Theorem 37, thecomputation of Max h(sat(G; �)) can be done as follows:(i) Traverse Tree(g) from top to bottom starting from the root assigning formulasto the internal nodes of the tree according to the following rules:(i.a) Assign to the root the formula �.(i.b) Let '1; : : : ; 'l be the formulas assigned to an internal node x by this process.If x corresponds to a unary operation of the form: �i!j or �i;j then useLemma 36 to obtain formulas '01; : : : ; '0l, such that for 1 � i � l,sat(Graph(x); 'i) = sat(Graph(y); '0i)where y is the son of x in Tree(g). Assign all these formulas to y.Otherwise x corresponds to the binary operation�. In this case use Theorem37 to obtain 2l lists of formulas '0i;1; : : : ; '0i;mi , and 0i;1; : : : ; 0i;mi , for 1 �i � l, such that:sat(Graph(x); 'i) = [1�j�mi sat(Graph(u); '0i;j)�sat(Graph(v); 0i;j);(3)where u and v are the two sons of x in Tree(g). Assign all the '0i;j formulasto u and all the 0i;j formulas to v.(ii) Traverse Tree(g) from bottom to top and, at each node x and for each formula' assigned to x by the previous step, compute Max h(sat(Graph(x); ')) asfollows:{ If x is a leaf compute Max h(sat(Graph(x); ')) directly.{ If x corresponds to a unary operation,set Max h(sat(Graph(x); ')) = Max h(sat(Graph(y); '0)),where y is the son of x, and '0 is the formula assigned to y by the previousstep.{ If x corresponds to the binary operation � then using equations (1)- (3)compute Max h(sat(Graph(x); ')) from the two lists ofvalues: Max h(sat(Graph(u); '0j));Max h(sat(Graph(v); 0j)),for 1 � j � m, where u and v are the sons of x in Tree(g) and '0j and 0j arethe lists of formulas assigned to u and v by the previous step, respectively.18

Also at each node x and each formula ' assigned to x keep one tuple ofsat(Graph(x); ') having the value Max h(sat(Graph(x); ')).The correctness of the above procedure follows from Lemma 36 and Theorem 37.For the complexity, the total time for handling the input graph G is O(f(jV j; jEj))for constructing the k-expression g plus the total time for applying the above pro-cedure. First note that the size of the tree Tree(g) is O(f(jV j; jEj)). In step (i) ofthe above process the number of formulas assigned to each node is bounded by aconstant (which does not depend on the size of the input graph G) since by Lemma36, Theorem 37 and Observation 14 all these formulas are of quanti�er depth nolarger than the quanti�er depth of �, and by Lemma 35 the number of such formulasis bounded (up to tautological equivalence) by a constant which depends just onthe size of � and k. Hence, in step (ii) the computation done at each node by theabove procedure is bounded by a constant (with the uniform cost measure), andthe total time of the above procedure is bounded by O(f(jV j; jEj)). Note that if xis a leaf then Graph(x) is a singleton, which implies thatMax h(sat(Graph(x); '))can be computed in a time that does not depend on the size of the input graph G,i.e., in constant time. Therefore the total complexity of handling the input graphG is O(f(jV j; jEj)) + O(jV j) = O(f(jV j; jEj)). 2Remark. Every k-expression for a graph G = hV;Ei can be transformed into ak-expression de�ning G of size O(jV j). This transformation can be done in lineartime by a tree transducer. Typically it will remove some redundancies or uselessoperation symbols (like a renaming �i!j operation when there is no vertex labeledi). (In these complexity considerations, k is �xed). Thus we could assume in theabove proof that the size of Tree(g) is O(jV j).5 Results that do not extend to MSOL(�2)In this section we will show that Theorems 2 and 4 do not hold whenLinMSOL(�1;p) is replaced byMSOL(�2). Clearly, if these theorems do not hold forMSOL(�2) they do not hold either for its extensions:MSOL(�2;p), LinMSOL(�2),and LinMSOL(�2;p). We will prove Theorem 6 but to do that we will need thefollowing de�nitions and theorem due to [Fag74]. We denote by �; the empty vo-cabulary, and we denote by SET the class of �nite structures over �;. We denote bySOL2 the formulas in SOL in which there are no function symbols, and the relationsymbols are restricted to be either unary or binary. Recall that P1 (NP1) denotesthe class of languages over one letter (also called tally languages), which are in P(NP). Note that P = NP implies P1 = NP1, but the other direction is not known.Note also that P1 = NP1 i� EXPTIME = NEXPTIME (cf. [Boo74, Har83]).De�nition38 (Spectrum, BIN).(i) Let S be a set of structures over �;. S is a spectrum, if there exists a formula' of the form 9X1; X2; :::; Xl�, such that � is �rst order, X1; X2; :::; Xl are theonly free variables of �, and for every �nite structure A over �;, A 2 S if andonly if ' holds in A. In this case we say that the spectrum S is de�nable by theformula '.(ii) We denote by BIN the set of all spectra de�nable by formulas using only onebinary predicate symbol which presents a graph relation, i.e., a relation whichis irreexive and symmetric. In other words a spectrum S is in BIN if it canbe de�ned by a formula ' of the form 9Q�, where � is �rst order, such that Qis the only free variable in �, and Q is a binary predicate symbol presenting agraph relation. 19

(iii) Let us observe that BIN is included in P1 i� for every spectrum S in BINthere exists a polynomial time deterministic Turing machineM , such that givenan integer n presented as a string in unary notation as an input (i.e., the lengthof the input is n and not log(n)), M accepts n if and only if the structure inSET having n elements is in S.The following theorem is due to [Fag74]:Theorem39. P1 = NP1 if and only if BIN � P1.We are now ready to prove Theorem 6 which we restate here for convenience.Theorem 6. If P1 6= NP1 then there is an MSOL(�2) de�nable decision prob-lem over the class of cliques which is not solvable in polynomial time.Proof: Let A be a structure in SET . We denote by KA the clique correspondingto A, such that the number of elements in the domain of A equals the number ofvertices of the clique KA.Recall (cf. De�nition 8) that R(t; x) holds if and only if the vertex x is incidenton the edge t. Let ' be an SOL2(�;) sentence. We denote by '] the MSOL(�2)sentence which is constructed from ' by replacing every sub-formula U (x; y) whereU is a binary relation symbol by the formula:9t(U (t) ^R(t; x)^R(t; y)):Since in a clique all the edges between all pairs of vertices exist, each pair of vertices(x; y) can be identi�ed by the unique edge t, incident to both x and y. Therefore,quanti�cation over pairs of vertices in cliques can be replaced by quanti�cation overedges, as indicated by the above formula which replaces the binary relation symbolU (x; y). Therefore, for every structure A in SET and every SOL2(�;) sentence ':A j= '() KA(�2) j= ']:Assuming that, over the class of cliques everyMSOL(�2)-de�nable decision problemcan be solved in polynomial time, we get that BIN � P1. For, let S be a spectrumin BIN , then there is an SOL2(�;) sentence ' which de�nes S. By our assumptionon the cliques, there is a Turing machine M which given an integer n in unarypresentation decides, in time bounded by a polynomial in n, whether Kn(�2) j= '].Hence, by the above equality, the machine M decides in polynomial time in nwhether A j= ', where n is the number of elements in A. It follows that S 2 P1, andhence that BIN � P1. By Theorem 39 this implies that P1 = NP1, a contradiction.2Question40. Can we still prove Theorem 6 if we replace the condition P1 6=NP1by the condition P 6=NP?AcknowledgmentsWe are grateful to Joost Engelfriet for his many valuable comments and suggestionswhich helped to improve the content of this paper.We thank the referees for their careful reading and their helpful comments.20

References[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree decomposablegraphs. Journal of Algorithms, 12:308{340, 1991.[BM83] H. Buer and R.H. M�ohring. A fast algorithm for the decomposition of graphsand posets. Math. Oper. Res., 8:170{184, 1983.[BO95] L. Babel and S. Olariu. On the isomorphism of graphs with few P4s. InM. Nagl, editor, Graph Theoretic Concepts in Computer Science, 21th Interna-tional Workshop, WG'95, volume 1017 of Lecture Notes in Computer Science,pages 24{36. Springer Verlag, 1995.[Bod96] H. L. Bodlaender. A linear time algorithm for �nding tree{decompositions ofsmall treewidth. SIAM J. Comput., 25:1305{1317, 1996.[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.Theoretical Computer Science, 209:1{45, 1998.[Boo74] R.V. Book. Tally languages and complexity classes. Information and Control,26:186{194, 1974.[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraphgrammars. J. Comput. System Sci., 46:218{270, 1993.[CH94] A. Cournier and M. Habib. A new linear algorithm for modular decomposition.Lecture Notes in Computer Science, 787:68{84, 1994.[CHLRR] D.G. Corneil and M. Habib and J.M. Lanlignel and B. Reed and U. Rotics.Polynomial time algorithm for the 3-clique-width problem. In preparation.[CM93] B. Courcelle and M. Mosbah. Monadic second{order evaluations on tree{decomposable graphs. Theoretical Computer Science, 109:49{82, 1993.[CMR98] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimizationproblems on certain structured graph families, extended abstract. In GraphTheoretic Concepts in Computer Science, 24th InternationalWorkshop,WG'98,volume 1517 of Lecture Notes in Computer Science, pages 1{16. Springer Verlag,1998.[CO99] B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. toappear in Disc. Appl. Math.(http://dept-info.labri.u-bordeaux.fr/�courcell/ActSci.html), 1999.[Cou90] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of�nite graphs. Information and Computation, 85:12{75, 1990.[Cou91] B. Courcelle. The monadic second-order logic of graphs V: On closing the gapbetween de�nability and recognizability. Theoret. Comput. Sci., 80:153{202,1991.[Cou94a] B. Courcelle. Monadic second-order de�nable graph transductions: a survey.Theoret. Comput. Sci., 126:53{75, 1994.[Cou94b] B. Courcelle. The monadic second-order logic of graphs VI: On several repre-sentations of graphs by relational structures. Disc. Appl. Math., 54:117{149,1994.[Cou95] B. Courcelle. The monadic second-order logic of graphs VIII: Orientations.Annals Pure Applied Logic, 72:103{143, 1995.[Cou96] B. Courcelle. The monadic second-order logic of graphs X: Linear orders. The-oret. Comput. Sci., 160:87{143, 1996.[Cou97] B. Courcelle. The expression of graph properties and graph transformations inmonadic second-order logic. In G. Rozenberg, editor, Handbook of graph gram-mars and computing by graph transformations, Vol. 1 : Foundations, chapter 5,pages 313{400. World Scienti�c, 1997.[EF95] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathe-matical Logic. Springer, 1995.[EHPR96] J. Engelfriet, T. Harju, A. Prokurowski, and G. Rozenberg. Characterizationand complexity of uniformly nonprimitive labeled 2-structures. Theoret. Com-put. Sci., 154:247{282, 1996.[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem for for-malized theories. Fundamenta Mathematicae, 49:129{141, 1961.21

[EO97] J. Engelfriet and V. van Oostrom. Logical description of context-free graphlanguages. J. Comput. System Sci., 55:489{503, 1997.[Fag74] R. Fagin. Generalized �rst-order spectra and polynomial time recognizable sets.American Math. Society Proc., 7:27{41, 1974.[Fef57] S. Feferman. Some recent work of Ehrenfeucht and Fra�iss�e. Proceedings of theSummer Institute of Symbolic Logic, Ithaca 1957, pp. 201-209.[FV59] S. Feferman and R. Vaught. The �rst order properties of algebraic systems.Fundamenta Mathematicae, 47:57{103, 1959.[GJ79] M.G. Garey and D.S. Johnson. Computers and Intractability. MathematicalSeries. W.H. Freeman and Company, 1979.[GRT97] V. Giakoumakis and F. Roussel and H. Thuillier. On P4-tidy graphs. DiscreteMathematics and Theoretical Computer Science, 1:17{41, 1997.[Gur79] Y. Gurevich. Modest theory of short chains, I. Journal of Symbolic Logic,44:481{490, 1979.[Gur85] Y. Gurevich. Monadic second order theories. In Model-Theoretic Logics, Per-spectives in Mathematical Logic, chapter 14. Springer Verlag, 1985.[GV97] V. Giakoumakis and J. Vanherpe. On extended P4-reducible and extendedP4-sparse graphs. Theoret. Comput. Sci., 180:269{286, 1997.[Har83] J. Hartmanis. On sparse sets in NP-P. Information Processing Letters, 16:55{60, 1983.[Ho�a85] C. Ho�ang. Doctoral thesis. McGill University, Montreal, 1985.[JO89] B. Jamison and S. Olariu. P4-reducible graphs a class of tree representablegraphs. Studies Appl. Math., 81:79{87, 1989.[JO92a] B. Jamison and S. Olariu. A linear-time recognition algorithm for P4-sparsegraphs. SIAM J. Comput., 21:381{406, 1992.[JO92b] B. Jamison and S. Olariu. A unique tree representation for P4-sparse graphs.Discrete Appl. Math., 35:115{129, 1992.[JO95a] B. Jamison and S. Olariu. A linear-time algorithm to recognize P4-reduciblegraphs. Theoret. Comput. Sci., 145:329{344, 1995.[JO95b] B. Jamison and S. Olariu. Linear-time optimization algorithms for P4-sparsegraphs. Discrete Appl. Math., 61:155{175, 1995.[L�au68] H. L�auchli. A decision procedure for the weak second order theory of linearorder. In Logic Colloquium '66, pages 189{197. North Holland, 1968.[Lau93] C. Lautemann. Logical de�nability of NP-optimization problems with monadicauxiliary predicates. Lecture Notes in Computer Science, 702:327{339, 1993.[Mak97] J.A. Makowsky. Translations, interpretations and reductions. Course given atESSLLI'97, August 11-22, 1997, Aix-en-Provence, France, 1997.[Pap94] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.[She75] S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379{419,1975.[Spi92] J. Spinrad. P4-trees and substitution decomposition. Discrete Appl. Math.,39:263{291, 1992.[Wan94] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Appl. Math.,54:251{266, 1994.
This article was processed using the LATEX macro package with LLNCS style22

