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In this work we confront—from a computational viewpoint—the Multiple Domination
problem, introduced by Harary and Haynes in 2000 among other variations of domination,
with the Limited Packing problem, introduced in 2009. In particular, we prove that the
Limited Packing problem is NP-complete for split graphs and for bipartite graphs, two
graph classes for which the Multiple Domination problem is also NP-complete (Liao and
Chang, 2003). For a fixed capacity, we prove that these two problems are polynomial time
solvable in quasi-spiders. Furthermore, by analyzing the combinatorial numbers that are
involved in their definitions applied to the join and the union of graphs, we show that both
problems can be solved in polynomial time for P4-tidy graphs. From this result, we derive
that they are polynomial time solvable in P4-lite graphs, giving in this way an answer to a
question stated by Liao and Chang on the domination side.

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries and notation

Graphs in this work are simple and connected and for
a graph G , V (G) and E(G) denote its vertex and edge sets,
respectively. A graph is trivial if it has at most one vertex.

For v ∈ V (G), NG [v] denotes the closed neighborhood
and dG(v), the degree of v in G . For S ⊆ V (G), NG [S] :=⋃

v∈S NG [v]. The minimum (maximum) degree between all
the vertices in G is denoted by δ(G) (�(G)).

Given two graphs G1 and G2 with V (G1) ∩ V (G2) = ∅,
the (disjoint) union of G1 and G2, denoted by G1 ∪ G2,
is the graph G with V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1)∪ E(G2). The join of G1 and G2, denoted by G1 ∨ G2,
is the graph G with V (G) = V (G1) ∪ V (G2) and E(G) =
E(G1) ∪ E(G2) ∪ {i j: i ∈ V (G1), j ∈ V (G2)}.

A stable set of G is a set of pairwise nonadjacent ver-
tices. The stable set problem consists of finding a stable
set of G with maximum size. A clique is a set of pairwise
adjacent vertices. A vertex cover is a subset of V (G) that
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contains at least one endpoint of every edge. The vertex
cover problem consists of finding a vertex cover of G with
minimum size. These two problems are known to be NP-
complete.

A graph G is split if V (G) can be partitioned into a
clique Q and a stable set S .

Among the variations of domination in graph theory,
the k-tuple domination was introduced in [9]. On the other
hand, k-limited packings were introduced in [6].

Given a graph G and a nonnegative integer k, B ⊆ V (G)

is a k-limited packing of G if |NG [v] ∩ B| � k, for every v ∈
V (G). Lk(G) denotes the cardinality of a k-limited packing
of G of maximum size. It is clear that Lk(G) � |V (G)| and
Lk(G) = |V (G)| if and only if k � �(G) + 1. Observe that
L0(G) = 0 for every graph G .

The Limited Packing problem is formulated as

INSTANCE: A graph G; positive integers k and α.

QUESTION: Does G contain a k-limited packing of size at
least α?

For a fixed positive integer k, the k-Limited Packing
problem is formulated as

INSTANCE: A graph G; a positive integer α.

QUESTION: Does G contain a k-limited packing of size at
least α?
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It is not difficult to see that both problems are in NP.
Notice that their answers are nontrivial on instances with
α � |V (G)| − 1 and |�(G)| � k.

Given a graph G and a nonnegative integer k, D ⊆ V (G)

is a k-tuple dominating set of G if |NG [v] ∩ D| � k, for every
v ∈ V (G). Notice that G has a k-tuple dominating sets if
and only if k � δ(G)+ 1 and, if G has a k-tuple dominating
set D , then |D| � k. When k � δ(G) + 1, γk(G) denotes the
cardinality of a k-tuple dominating set of G of minimum
size and γk(G) = +∞, when k > δ(G) + 1. Observe that
γ0(G) = 0 for every graph G .

The Multiple Domination problem is formulated as

INSTANCE: A graph G; positive integers k and α.

QUESTION: Does G contain a k-tuple dominating set of
size at most α?

For a positive integer k, the k-Tuple Domination problem
is formulated as

INSTANCE: A graph G; a positive integer α.

QUESTION: Does G contain a k-tuple dominating set of
size at most α?

It is not difficult to see that both problems are in NP.
Notice that their answers are nontrivial on instances with
α � k + 1 and δ(G) + 1 � k.

Two separate linear-time algorithms for solving the
Multiple Domination and Limited Packing problems in tree
graphs were provided independently (see [3,17]).

On the domination side, the authors extended the re-
sults in [17] by providing a linear-time algorithm for
strongly chordal graphs [18].

Let us point out that, when a graph G is strongly
chordal, the incidence matrix N[G] of the closed neigh-
borhoods of the vertices of G is totally balanced [5], i.e.
the only square submatrix with two ones per row and per
column is the 2 × 2 submatrix of all ones. A 0,1 matrix
is in standard greedy form if it contains no 2 × 2 subma-
trix of the form

( 1 1
1 0

)
, where the order of the rows and

columns is the same in the submatrix as in the matrix.
The rows and columns of a totally balanced matrix of or-
der m × n can be permuted into standard greedy form in
time O (nm2) [1,12,19]. If N[G] is in standard greedy form,
the linear program max{∑m

i=1 yi: yN[G] � k, 0 � y � 1}
can be solved by a greedy algorithm, which gives an in-
tegral optimal solution (see for example [2]). Then, when
G is a strongly chordal graph, the objective Lk(G) can be
obtained by solving the previous linear program.

Concerning NP-completeness results, the authors in [18]
proved that the Multiple Domination problem is NP-
complete for split graphs and for bipartite graphs, and left
open its complexity for other subclasses of perfect graphs.

Firstly, in this paper we prove that the Limited Packing
problem is NP-complete for split graphs and for bipartite
graphs. Then, we provide new graph classes where both
problems—the Multiple Domination and Limited Packing
problems—are polynomial time solvable; in particular, an-
other class of perfect graphs, answering in this way a ques-
tion stated by Liao and Chang [18] on the domination side.

Some of the results in this work have been already
published—without proofs—in an electronic version [4].

Fig. 1. G and G ′ in Theorem 1, for k = 2.

The paper is organized as follows. Section 2 is devoted
to the NP-completeness results. In Section 3, we show
that the k-Limited Packing and k-Tuple Domination prob-
lems are polynomial time solvable in quasi-spiders. In Sec-
tion 4, by analyzing the combinatorial numbers involved,
we prove that they are also polynomial time solvable in
P4-tidy graphs. In addition, we find the computational
complexity of the k-Tuple Domination problem for another
subclass of perfect graphs.

2. The Limited Packing problem in split graphs and in
bipartite graphs

In order to prove that the k-Tuple Domination problem
is NP-complete for split graphs and for bipartite graphs,
the authors in [18] reduced the vertex cover problem in
both cases.

In this section, we will first reduce polynomially the
stable set problem to the k-Limited Packing problem in a
split graph. Actually, we have:

Theorem 1. The k-Limited Packing problem is NP-complete for
split graphs.

Proof. We already know that the k-Limited Packing prob-
lem is in NP.

Let G be a graph with V (G) = {v j: j = 1, . . . ,n} and
E(G) = {el: l = 1, . . . ,m}. We construct a split graph G ′
with V (G ′) := E(G) ∪ S , where S := ⋃k

i=1 V i and V i =
{vi

j: j = 1, . . . ,n} for i = 1, . . . ,k and adjacencies de-
fined in the following way: if e = v p vq ∈ E(G), NG ′ [e] =⋃k

i=1{vi
p, vi

q}∪ E(G) and if vi
j ∈ V i , NG ′ [vi

j] = {e ∈ E(G): v j

is an extreme of e ∈ G}, for i = 1, . . . ,k (see Fig. 1 for an
example).

We will prove that G has a stable set of size s if and
only if G ′ has a k-limited packing of size ks.

Given I , a stable set of G , it is straightforward that⋃k
i=1{vi

j: v j ∈ I} is a k-limited packing of G ′ and the only
if part follows.

Now take B ′ , a k-limited packing of G ′ of size ks.
Firstly observe that, if e = v p vq ∈ B ′ ∩ E(G), there exists

i ∈ {1, . . . ,k} such that vi
p, vi

q /∈ B ′ and moreover, B ′ \ {e} ∪
{vi

p} is also a k-limited packing of G ′ .
Secondly, if e = v p vq ∈ E(G) and for some i ∈ {1, . . . ,k},

{vi
p, vi

q} ⊆ B ′ , then k � 2 since vi
p and vi

q are both adjacent
to e in G ′ . In this case, there exists j ∈ {1, . . . ,k} with j �= i
such that v j

p, v j
q /∈ B ′ . Thus B ′ \ {vi

p} ∪ {v j
p} is a k-limited

packing of G ′ .
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Fig. 2. G and G ′ in Theorem 2.

Thus, w.l.o.g. we can assume that B ′ ∩ E(G) = ∅ and
that vi

p /∈ B ′ or vi
q /∈ B ′ , for every i ∈ {1, . . . ,k} and every

e = v p vq .
Consequently, for each j = 1, . . . ,n, the subset {v j: vi

j ∈
B ′} is a stable set of G of size |B ′ ∩ V i |, for i = 1, . . . ,k.
Since |B ′| = ks, there exists i ∈ {1, . . . ,k} with |B ′ ∩
V i| � s. �

For bipartite graphs, we have:

Theorem 2. The Limited Packing problem is NP-complete for
bipartite graphs.

Proof. We already know that the Limited Packing problem
is in NP.

We will reduce the Multiple Domination problem in a
bipartite graph to the Limited Packing problem in a bipar-
tite graph. Let G be a bipartite graph, k and α two positive
integers, with k � δ(G)+1 and α � k+1, that define an in-
stance of the Multiple Domination problem. We construct
a graph G ′ such that V (G ′) = V (G)∪⋃

v∈V (G) S v , where S v

is a set on �(G) − dG(v) new vertices, for each v ∈ V (G),
and E(G ′) = E(G) ∪ ⋃

v∈V (G){vx: x ∈ S v } (see Fig. 2, where
the vertices in white correspond to those in the stable
sets S v , for v ∈ V (G)). Clearly, the graph G ′ is bipartite and
G ′ = G when G is regular. Besides, let k′ = �(G) − k + 1.

We will prove that G has a k-tuple dominating set of
size at most α if and only if G ′ has a k′-limited packing of
size at least α′ := |V (G ′)| − α.

Let R be a k-tuple dominating set of G with |R| � α.
We will demonstrate that B := V (G ′) \ R is a k′-limited
packing of G ′ . Clearly from its definition, S v ⊆ B , for every
v ∈ V (G).

Take w ∈ V (G ′). If w ∈ S v for some v ∈ V (G), |NG ′ [w]∩
B| is equal to 1 or 2. In any case, we have |NG ′ [w]∩ B| � k′ .
Indeed,

• when k = �(G)+1—in which case G is regular—k′ = 0,
R = V (G) and B = ∅;

• when k = �(G)—in which case dG(x) ∈ {�(G) − 1,

�(G)} for all x ∈ V (G), dG(v) = �(G)− 1 and NG [v] ⊆
R—|NG ′ [w] ∩ B| = 1 = k′;

• when k � �(G) − 1, k′ � 2.

If w ∈ V (G ′) ∩ V (G),

∣∣NG ′ [w] ∩ B
∣∣ = |S w ∩ B| + ∣∣NG [w] \ R

∣∣
= |S w | + ∣∣NG [w] \ R

∣∣
= �(G) − dG(w) + ∣∣NG [w] \ R

∣∣.

Fig. 3. A quasi-spider obtained from a thin spider. The white vertex in C
is replaced by an S2.

Since |NG [w] ∩ R| � k, |NG [w] \ R| � dG(w) + 1 − k, thus
|NG ′ [w] ∩ B| � k′ . Consequently, B is a k′-limited packing
of G ′ and clearly holds |B| = |V (G ′)| − |R| � α′ .

To see the converse, let B be a k′-limited packing of G ′
with |B| � α′ and let R := V (G) \ B . We will prove that R
is a k-tuple dominating set of G .

Notice that, since k � δ(G) + 1, |S v | = �(G) − dG(v) �
�(G) − k + 1 = k′ for every v ∈ V (G). W.l.o.g. we assume
that S v ⊆ B for every v ∈ V (G).

Then, given v ∈ V (G), |NG [v] ∩ B| = |NG ′ [v] ∩ B| − |B ∩
S v | = |NG ′ [v] ∩ B| − |S v | = |NG ′ [v] ∩ B| − �(G) + dG(v).
Since B is a k′-limited packing of G ′ , we have |NG [v]∩ B| �
dG(v) + 1 − k. This implies that |NG [v] ∩ R| = dG(v) + 1 −
|NG [v] ∩ B| � k, that is, R is a k-tuple dominating set of G .
Clearly, |R| = |V (G)| − |B| � α. �
3. k-limited packings and k-tuple dominating sets of
quasi-spiders

A spider is a graph whose vertex set can be partitioned
into S , C and R , where S = {s1, . . . , sr} is a stable set, C =
{c1, . . . , cr} is a clique, r � 2 and the head R is allowed to
be empty. Moreover, all vertices in R are adjacent to all
vertices in C and non-adjacent to all vertices in S . In a
thin spider, si is adjacent to c j if and only if i = j, and in
a thick spider, si is adjacent to c j if and only if i �= j. It
is straightforward that the complementary graph of a thin
spider is a thick spider, and vice-versa. The triple (S, C, R)

is called the (spider) partition and can be found in linear
time [13].

A graph is a quasi-spider [7] if it is obtained from a spi-
der with partition (S, C, R) by replacing at most one vertex
of S ∪ C by a K2 (clique on two vertices) or a S2 (stable
set on two vertices). Observe that a spider is an example
of a quasi-spider. For the sake of simplicity, in the remain-
der of this work the partition of a quasi-spider obtained
from a spider with partition (S, C, R) will be denoted by

(S ←↩ W , C, R) or (S, C ←↩ W , R),

meaning that some vertex of S or C was replaced by W ,
where W is a K2, S2, or the empty set in case the quasi-
spider is a spider. When W �= ∅, the vertex set of W will
be denoted by {w1, w2}.

Besides, when G is a quasi-spider with partition (S ←↩

W , C, R) ((S, C ←↩ W , R)), we will have the license to
write G = (S ←↩ W , C, R) (G = (S, C ←↩ W , R)) and to con-
sider S ⊆ (S ←↩ W ) and C ⊆ (C ←↩ W ). (See Fig. 3.)

In this section we obtain closed formulas for the num-
bers Lk(G) and γk(G) when G is a quasi-spider.

Recall that for every graph G , Lk(G) = |V (G)| when k �
�(G) + 1. For the remaining values of k, we have:
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Proposition 3. Let H = (S, C, R), G be a quasi-spider obtained
from H and 1 � k � �(G).

1. If H is thin, then Lk(G) = |S| + k − 1.
2. If H is thick, then

Lk(G) =
{

k when 1 � k � |S| − 2,

k + 1 when |S| − 1 � k � �(G).

Proof. 1. Suppose H is thin. Let us first show that Lk(G) �
|S| + k − 1, for every k � 1. Take A ⊆ R ∪ C with k − 1
vertices, and define B := S ∪ A. It is clear that |NG [v] ∩
B| � k for each v ∈ V (G), i.e. B is a k-limited packing of G ,
thus Lk(G) � |S| + k − 1.

To prove the other inequality, take B a k-limited pack-
ing of G . Let us remark that, if B ⊆ R ∪C then |B| � k, since
there exists x ∈ C such that R ∪ C ⊆ NG [x]. Thus, when B
is maximum, B ∩ S �= ∅, and consequently |B ∩ (R ∪ C)| �
k − 1. Moreover, S ⊆ B and therefore, Lk(G) � |S| + k − 1.

2. Suppose H is thick. Firstly, let us point out that
any subset of V (G) with k vertices is a k-limited pack-
ing of G , thus Lk(G) � k. Take 1 � k � |S| − 2. Notice that
there exists x ∈ C such that |NG [x]| = |V (G)| − 1. Then,
given T ⊆ V (G) with |T | = k + 1, there exists a vertex
whose closed neighborhood contains T . This implies that
Lk(G) � k. Therefore Lk(G) = k.

Now take k � |S| − 1. We will show that B := S ∪ B ′ ,
with B ′ ⊆ V (G) \ S and |B ′| = k − (|S| − 1) is a maximum
k-limited packing of G .

• When G = H or G = (S, C ←↩ W , R), take B ′ ⊆ V (G) \
S with |B ′| = k − (|S| − 1). It holds that |NG [v] ∩ B| �
|S| − 1 + k − (|S| − 1) = k for every v ∈ V (G), i.e. B is
a k-limited packing of G and therefore Lk(G) � k + 1.
Moreover, any subset of V (G) with k + 2 vertices in-
tersects the closed neighborhood of some vertex of C
in at least k + 1 elements, implying Lk(G) � k + 1.

• Suppose G = (S ←↩ W , C, R). When k = |S| − 1 or
k = |S|, it is straightforward that we can choose B ′ = ∅
or B ′ = {wi} for some i ∈ {1,2}, respectively, and B
is a maximum k-limited packing of G . Otherwise, by
choosing B ′ := {wi} ∪ A and A ⊆ R ∪ C with |A| =
k − |S|, B is a k-limited packing of G; clearly |NG [v] ∩
B| � k for each v ∈ R ∪ (S ←↩ W ) and |NG [v] ∩ B| =
|NG [v] ∩ (S ←↩ W )| + |NG [v] ∩ A| � |S| + |A| = k for
each v ∈ C . Therefore, Lk(G) � |B| = k + 1. In order to
see the other inequality, let us observe that there is
no k-limited packing of G with k + 2 vertices or more.
Indeed, for every set B on k + 2 vertices, there exists
q ∈ C with |B ∩ NG [q]| � k + 1, i.e. B is not a k-limited
packing of G . Then Lk(G) � k + 1. �

Concerning domination problems, recall that, for any
given graph G , γk(G) = +∞ for k � δ(G) + 2. Hence, when
G is a quasi-spider constructed from a spider H with par-
tition (S, C, R), γk(G) is known when H is thin and k � 3
(since δ(G) = 1), and also when H is thick and k � |S| + 1
(since δ(G) = |S| − 1). The following proposition considers
the remaining values for k.

Proposition 4. Let H = (S, C, R), G be a quasi-spider obtained
from H and 1 � k � δ(G) + 1.

1. If H is thin, then γ1(G) = |S| and

γ2(G) =
{

2|S| + 1 when G = (S ←↩ S2, C, R),

2|S| otherwise.

2. If H is thick, then γk(G) = k + 1 for 1 � k � |S| − 1 and

γ|S|(G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|S| + 2 when G = (S, C ←↩ W , R),

2|S| when G = (S ←↩ K2, C, R)

or G = H,

2|S| + 1 when G = (S ←↩ S2, C, R).

Proof. 1. Suppose H is thin, G = H and D is a k-tuple
dominating set of G . Let k = 1. Each x ∈ S , itself or its
neighbor must be in D , implying that γ1(G) � |S|. On
the other hand, C is a 1-tuple dominating set of G , thus
γ1(G) = |S|. Now let k = 2. Each vertex in S and its
neighbor are in D , implying that C ∪ S ⊆ D and then
γ2(G) � 2|S|. Since C ∪ S is a 2-tuple dominating set of G ,
γ2(G) = 2|S|.

The proofs of the statements for quasi-spiders that are
not spiders easily follow.

2. Suppose H is thick and consider the following values
for k:

• Take 1 � k � |S| − 1. Every subset of C with k + 1
elements is a k-tuple dominating set of G , implying
γk(G) � k+1. On the other hand, given D ⊆ C ∪ S with
|D| = k, there exists a vertex in C ∪ S whose closed
neighborhood has at most k − 1 vertices in D , i.e., ev-
ery k-tuple dominating set of G must have at least
k + 1 vertices in C ∪ S , implying γk(G) � k + 1.

• k = |S|. When G = (S, C ←↩ W , R), and—w.l.o.g—c1 ∈ C
is replaced by W , |NG [s1]| = |S| and this implies that
((C ←↩ W ) \ W ) ∪ {s1} ⊆ D for every k-tuple dominat-
ing set of G . Moreover, since |NG [s]∩ (C ←↩ W )\ W | =
|S| − 1 for s ∈ S \ {s1}, every k-tuple dominating set
of G must contain at least one vertex of W , say w1
and also, s or w2; thus γk(G) � |S| + 2. Besides, ob-
serve that every x ∈ S \ {s1} has exactly |S| adjacent
vertices in C ←↩ W . Since (C ←↩ W ) ∪ {s1} is a k-tuple
dominating set of G , γk(G) � |S| + 2. Thus the result
follows.
When G = H , every vertex in S has exactly |S| ver-
tices in its closed neighborhood, then every k-tuple
dominating set of G must contain the set C ∪ S .
Hence, γk(G) � 2|S|. But C ∪ S is a k-tuple dominat-
ing set of G , therefore γk(G) = 2|S|. In case G = (S ←↩

K2, C, R), if s1 ∈ S is the vertex replaced by a K2, the
same argument is valid since every vertex in S − {s1}
has exactly |S| vertices in its closed neighborhood. The
result follows.
When G = (S ←↩ S2, C, R), we have |NG [s]| = |S| for
each s ∈ S ←↩ S2. Then NG [(S ←↩ S2)] ⊆ D for every k-
tuple dominating set of G . This implies that γ|S|(G) �
|S| + |C | + 1 = 2|C | + 1. But C ∪ (S ←↩ W ) is a k-tuple
dominating set of G and the result follows. �
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As a corollary of the above two propositions, we have:

Corollary 5. The k-Limited Packing and the k-Tuple Domination
problems can be solved in polynomial time in quasi-spiders.

We conclude this section by pointing out that spiders
with empty head and those with partition (S ←↩ S2, C,∅)

or (S, C ←↩ K2,∅) are split graphs, thus, they constitute a
subclass of split graphs where both problems are polyno-
mial time solvable.

4. The k-Limited Packing and the k-Tuple Domination
problems in P4-tidy graphs

P4-tidy graphs were introduced by Rusu (see [7]), gen-
eralizing cographs and P4-sparse graphs [11].

A partner of a path on four vertices P in G is a ver-
tex v ∈ V (G) − V (P ) such that the subgraph induced by
V (P )∪ {v} has at least two paths on four vertices. A graph
G is P4-tidy if every path on four vertices has at most one
partner. It is not difficult to prove that the family of P4-
tidy graphs is hereditary and self-complementary (for de-
tails see [7,11,14]). Quasi-spiders are involved in a known
characterization of P4-tidy graphs presented in [7].

Let us recall some well known facts that are valid for
any graph. Given a graph G , if G or the complementary
graph of G is not connected, G is the union or the join of
two smaller graphs, respectively. This “decomposition” can
be performed iteratively on each connected component of
G or the complementary graph of G , until all subgraphs
obtained, and also their complementary graphs, are con-
nected. The complete decomposition can be performed in
linear time and, once such a decomposition is obtained,
we can reconstruct the given graph G in at most O (log2 n)

union and join operations, where n is the number of ver-
tices in G . For details, see for instance [8].

The above arguments lead us to analyze the behavior of
the packing and domination parameters under the union
and join of graphs. We have:

Proposition 6. Let G1 and G2 be two graphs and k a nonnega-
tive integer number. Then,

1. Lk(G1 ∪ G2) = Lk(G1) + Lk(G2) and γk(G1 ∪ G2) =
γk(G1) + γk(G2),

2. Lk(G1 ∨ G2) = max{s + r: s, r � k, s, r ∈ Z+, s �
Lk−r(G1), r � Lk−s(G2)} and

3. γk(G1 ∨ G2) = min{s + r: s, r � k, s, r ∈ Z+, γk−r(G1) �
s � |V (G1)|, γk−s(G2) � r � |V (G2)|}.

Proof. 1. It is straightforward.
2. Let B be a k-limited packing of G1 ∨ G2 with |B| =

r + s, where s = |B ∩ V (G1)| and r = |B ∩ V (G2)|. For
x1 ∈ V (G1), |NG [x1] ∩ B| = r + |NG1 [x1] ∩ B| � k, imply-
ing that B ∩ V (G1) is a (k − r)-limited packing of G1
of size s. Thus s � Lk−r(G1). Similarly, r � Lk−s(G2). This
proves that Lk(G1 ∨ G2) � max{s + r: s, r � k, s, r ∈ Z+, s �
Lk−r(G1), r � Lk−s(G2)}.

Now take a (k−r)-limited packing B1 of G1 with |B1| =
s and a (k − s)-limited packing B2 of G2 with |B2| = r.

It is not difficult to see that B1 ∪ B2 is a k-limited pack-
ing of G1 ∨ G2. Therefore max{s + r: s, r � k, s, r ∈ Z+,

s � Lk−r(G1), r � Lk−s(G2)} � Lk(G1 ∨ G2).
3. It is similar to the proof of item (2). �

Corollary 7. For a given nonnegative integer k, graphs G1
and G2 , and provided that Lr(Gi) (γr(Gi)) can be computed in
polynomial time for each integer number r � k and i = 1,2,
Lk(G1 ∪ G2) (γk(G1 ∪ G2)) and Lk(G1 ∨ G2) (γk(G1 ∨ G2))
can be computed in polynomial time.

Going back to P4-tidy graphs, it is known that the com-
plementary graph of a nontrivial connected P4-tidy graph
is also connected if and only if it is P5, P 5, C5 or a quasi-
spider. Then, Propositions 3 and 4 together with the results
in this section allow us to state the following theorem:

Theorem 8. The Limited Packing and the Multiple Domination
problems are polynomial time solvable for P4-tidy graphs.

With regard to a question raised by Liao and Chang
in [18] concerning the existence of another class of perfect
graphs where the k-Tuple Domination problem is polyno-
mial time solvable, we would like to add that Theorem 8
implies that the problems treated in this work are polyno-
mial time solvable on the class of P4-lite (C5-free P4-tidy)
graphs. P4-lite graphs were defined by Jamison and Olariu
[15,16] and proved to be perfect by Hayward [10].
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