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Abstract: In a recent work, Gallant et al. introduced the notion of k-limited packing in a graph, generalizing a
2-packing in a graph. They relate Lk, the size of a maximum k-limited packing, with γ, the domination number of
the graph and particularly focus on 2-limited packings. They show that all trees satisfying L2 = 2γ can be built via a
sequence of certain operations.

In this work, generalizing k-limited packings, we introduce limited packings with arbitrary capacities and forbid-
den vertices, and derive a linear time algorithm that finds a maximum k-limited packing in a given tree, for any k. A
simple modification of our algorithm also decides if a given tree satisfies Lk = kγ, for any k, in linear time.
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1 INTRODUCTION

In this work we consider a location graph problem which models several scenarios, previously considered
by Gallant et al. in [3], as the location of sensors in a network security, or of obnoxious facilities (such as
garbage) in a city.

If a graph G models the scenario, we consider a subset A of vertices of G, representing the possible
locations for the facilities. We are interested in the subsets of A satisfying that, for every vertex v, the
number of facilities located inside the closed neighborhood of v does not exceed cv, a non negative integer
representing the capacity of v.

Gallant et al. studied the case where cv = k for every vertex v, and A is the whole set of vertices of the
graph [3]. They called k-limited packings the subsets of feasible locations for the facilities, and Lk the size
of a k-limited packing of maximum cardinality. Following the terminology and notation in that work, in
this work the subsets of feasible locations are called (c,A)-limited packings and the size of a (c,A)-limited
packing of maximum cardinality is denoted by Lc,A.

A dominant set D in a graph G is a subset of vertices such that every vertex not in D is adjacent to
some vertex in D. Given a cost vector c associated with the vertices of G, the cost of a dominating set
D is

∑
v∈D cv, and γ(c) denotes the minimum cost over all dominating sets. If c = 1, γ(1) = γ is the

well-known dominating number of the graph.
By using combinatorial arguments, Gallant et al. [3] proved that Lk ≤ kγ, for any k. They focused on

the problem of characterizing trees which satisfy this inequality by equality when k = 2, and showed that
any of such trees can be built via a sequence of certain operations. Two of these operations require that
one knows if a vertex is not in some maximum 2-limited packing. Unfortunately, from the computational
complexity point of view, their implementation could be “as difficult” as finding the number L2 itself, or as
finding a 2-limited packing of maximum cardinality. This is one of the reasons that motivates us to focus on
the problem of finding a (c,A)-limited packing of maximum cardinality on trees. We refer this problem as
ALPT.

It is known that γ(c) can be obtained in polynomial time on trees, for any integer vector c [2]. It can also
be proved that, in the context of totally balanced matrices, ALPT can be solved in time O(|V (G)|3).

In this work we prove that ALPT can be solved in linear time and show that, by a simple adaptation of
the involved algorithm, we can also decide in linear time if Lk = kγ, for any k.

2 DEFINITIONS AND FIRST RESULTS

Throughout this work, graphs are simple and for a graph G, V (G) and E(G) denote respectively its ver-
tex and edge sets. For v ∈ V (G), N(v) andN [v] denote the (open) neighborhood and closed neighborhood
of v, respectively. The degree of v in G is defined as |N(v)|.



Given a subset of vertices R ⊆ V (G), G\R denotes the induced subgraph of G obtained by the deletion
of the vertices in R, that is, the subgraph with vertex set V (G) − R and edge set, the subset of E(G) of
edges with both endpoints included in V (G)−R.

We formally present a generalization of k-limited packings:

Definition 1 Let G be a graph, c ∈ ZV (G)
+ and A ⊆ V (G). A set of vertices B ⊆ V (G) is a (c,A)-limited

packing in G if B ⊆ A and |B ∩N [v]| ≤ cv, for every v ∈ V (G).

Given a graph G, let us consider the 0, 1 matrix N = (aij) with columns and rows indexed by V (G) and
where aij = 1 if and only if j ∈ N [i]. Clearly, N is a symmetric matrix.

The numbers Lc,A and γ(c) can be obtained as the optimal values of the following integer programs:

Lc,A = max{1x : Nx ≤ c, xv = 0, ∀v /∈ A, x ∈ {0, 1}V (G)},

and
γ(c) = min{cx : Nx ≥ 1, x ∈ {0, 1}V (G)}.

By linear programming arguments, it can be proved that Lc,V (G) ≤ γ(c).
It is known [2] that, when G is a tree, N is a totally balanced matrix, i.e, every hole submatrix of N is

the 2 × 2 submatrix of all 1s. It is also known that the rows and columns of a totally balanced matrix of
order m × n can be permuted into standard greedy form in time O(nm2) ([1], [4] and [5]). Besides, if a
matrix is in standard greedy form, any linear program associated with it can be solved by a greedy algorithm.
Moreover, when every right hand side in the restrictions involved in the linear program is an integer number,
the optimal solution given by a greedy algorithm is integral.

The previous results allow us to conclude that the calculus of the parameters Lc,A and γ(c), as well as
a certificate that the equality between them is satisfied for c = k1, can be obtained in polynomial time on
trees.

Moreover, from complementary slackness, the conditions for optimality stated by Gallant et al. in [3]
can be generalized in the following way:

Lemma 1 Given a graph G, A ⊆ V (G) and c ∈ ZV (G)
+ , Lc,A = γ(c) if and only if for any maximum

(c,A)-limited packingB inG and any minimum cost dominating setD inG, the following statements hold:

1. for any b ∈ B, |N [b] ∩D| = 1,

2. for any d ∈ D, |N [d] ∩B| = cd.

In the next section we provide a linear algorithm which solves ALPT and, in the particular case where
c = k1 and A = V (T ), it decides whether the equality Lk(T ) = kγ(G) holds.

3 TOWARDS THE ALGORITHMS

Given a tree T , a leaf is a vertex with degree one and a stem is a vertex having a leaf in its neighborhood.
L(T ) and S(T ) denote the leaf and stem sets of T , respectively. For l ∈ L(T ), s(l) denotes the stem
adjacent to l. Also, for each v ∈ S(T ), L(v) = L(T ) ∩N(v) and nv = |L(v)|.

We can state the following result, whose proof is omitted due to the space constraints:

Theorem 1 Let T be a tree, c ∈ ZV (T )
+ and A ⊆ V (T ), with L(T ) ⊆ A. The following items hold:

1. if l ∈ L(T ) with cl = 0 then, B is a maximum (c,A)-limited packing in T if and only if B is a
maximum (c,A− {l, s(l)})-limited packing in T \ {l};

2. if v ∈ S(T ) with cv < nv and cl ≥ 1 for every l ∈ L(v) then, B is a maximum (c,A)-limited packing
in T if and only if B is a maximum (c,A −Hv)-limited packing in T \Hv, where Hv ⊆ L(v) with
|Hv| = ns − cs;



3. if cl ≥ 1 for all l ∈ L(T ) and cs ≥ ns for every s ∈ S(T ), then there exists a maximum (c,A)-limited
packing B in T verifying:

• L(T ) ⊆ B, and

• B − L(T ) is a maximum (c′,A′)-limited packing in T \ L(T ), where

– c′v = cv − nv for every v ∈ S(T ), c′v = cv otherwise, and
– A′ = A− (L(T ) ∪ {s(l) : cl = 1, l ∈ L(T )}).

This theorem yields a linear time algorithm to solve ALPT. The proposed algorithm incorporates in each
iteration, the set of allowed leaves to the set B, actualizes the capacity of the leaves and stems, and finally
deletes the leaves. All these tasks can be done in linear time on the size of L(T ). Clearly, in each iteration,
we deal with a tree with at least two vertices less than the quantity of vertices in the tree in the previous
iteration. Since the number of iterations is at most the height of the given tree T , the algorithm is linear on
the size of V (T ).

In order to answer the question whether a given tree T satisfies Lk(T ) = kγ(T ), for certain k ∈ Z+, we
adapt our algorithm, by starting withA = V (G) and c = k1 and making use of the following result, whose
proof is also omitted due to the space constraints:

Theorem 2 Given a tree T , there exists a dominating set D of minimum cardinality such that S(T ) ⊆ D
and D − S(T ) is a minimum dominating set of T \

⋃
v∈S(T )N [v].

The adapted version of the primary algorithm incorporates in each iteration, vertices to the set D, and
checks whether any of the conditions in lemma 1 is violated. If so, it stops. If both conditions are always
fulfilled, it finishes having computed the numbers Lk(T ) and γ(T ) in linear time.
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