
Chapter 3
Complexity and Algorithmic Results

3.1 Introduction

In this chapter we discuss complexity and algorithmic results on total domination in
graphs. This area, although well studied, is still not developed to the same level as
for domination in graphs. We will outline a few of the best-known algorithms and
state what is currently known in this field.

3.2 Complexity

The basic complexity question concerning the decision problem for the total
domination number takes the following form:

Total Dominating Set
Instance: A graph G = (V,E) and a positive integer k
Question: Does G have a TD-set of cardinality at most k?

For a definition of the graph classes mentioned in this chapter, we refer the reader
to the excellent survey on graph classes by Brandstädt, Le, and Spinrad [18] which
is regarded as a definitive encyclopedia for the literature on graph classes.

Let graph class G1 be a proper subclass of a graph class G2, i.e., G1 ⊂ G2.
If problem P is NP-complete when restricted to G1, then it is NP-complete on
G2. Furthermore, any polynomial time algorithm that solves a problem P on G2

also solves P on G1. Hence it is useful to know the containment relations between
certain graph classes. In particular, we have the containment relations described
above Table 3.1:

Table 3.1 summarizes the NP-completeness results for the total domination
number with the corresponding citation. We abbreviate “NP-complete” by “NP-c”
and “polynomial time solvable” by “P.”

M.A. Henning and A. Yeo, Total Domination in Graphs, Springer Monographs
in Mathematics, DOI 10.1007/978-1-4614-6525-6 3,
© Springer Science+Business Media New York 2013

19

20 3 Complexity and Algorithmic Results

Bipartite ⊂ comparability

Split ⊂ chordal

Claw-free ⊂ line

Strongly chordal ⊂ dually chordal

Permutation ⊂ k-polygon ⊂ circle

Interval ⊂ strongly chordal ⊂ chordal

Permutation ⊂ cocomparability ⊂ asteroidal triple-free

Table 3.1 NP-complete results for the total domination number

NP-completeness
Graph Class result Citation

General graph NP-c [170]
Bipartite graph NP-c [170]
Comparability graph NP-c [170]
Split graph NP-c [158]
Chordal graph NP-c [159]
Line graph NP-c [165]
line graph of bipartite graph NP-c [165]
Claw-free graph NP-c [165]
Circle graph NP-c [151]
Planar graph, max-degree 3 NP-c [71]
Chordal bipartite graph P [155, 174]
Interval graph P [10, 11, 25, 150, 176]
Permutation graph P [17, 38, 155]
Strongly chordal graph P [24]
Dually chordal graph P [155]
Cocomparability graph P [154, 155]
Asteroidal triple-free graphs P [156]
DDP-graphs P [156]
Distance hereditary graph P [26, 155]
k-polygon graph (fixed k ≥ 3) P [155]
Partial k-tree (fixed k ≥ 3) P [8, 195]
Trapezoid graph P [156]

As far as we are aware the class of chordal bipartite graphs is the only class where
the complexities of finding a minimum dominating set and a minimum TD-set vary.
The problem of finding a minimum dominating set in chordal bipartite graphs is
NP-hard, by a result in [41].

3.3 Fixed Parameter Tractability 21

3.2.1 Time Complexities

In [155] Kratsch and Stewart give a transformation that implies that any algorithm
for domination can be used for total domination for a wide variety of graph classes,
such as permutation graphs, dually chordal graphs, and k-polygon graphs. In [155]
it is pointed out that this gives an O(nm2) algorithm for computing a minimum
cardinality TD-set in cocomparability graphs, improving on an O(n6) algorithm in
[154]. It also implies an O(n+m) and an O(n ln(ln(n))) algorithm for permutation
graphs.

In [156] Kratsch gives an O(n6) algorithm for total domination in asteroidal
triple-free graphs. Asteroidal triple-free graphs form a large class of graphs con-
taining interval, permutation, trapezoid, and cocomparability graphs, and therefore,
there exist O(n6) algorithms for these graph classes as well. In fact, in [156] it is
shown that there is a O(n7) algorithm for total domination for the larger class of
DDP-graphs. A DDP-graph is a graph where every component has a dominating
diametral path, which is a path whose length is equal to the diameter and whose
vertex set dominates the graph. Any asteroidal triple-free graph is also a DDP-graph.

In [174] Pradhan gives an O(n+m) algorithm for finding a minimum TD-set
in chordal bipartite graphs. In [26] a linear algorithm is also given for distance
hereditary graphs.

Bertossi and Gori [11] constructed an O(n lnn) algorithm for the total domination
number of an interval graph of order n.

Adhar and Peng [1] presented efficient parallel algorithms for total domination in
interval graphs, while Bertossi and Moretti [12] and Rao and Pandu Rangan [177]
presented efficient parallel algorithms for total domination on circular-arc graphs.

In Sect. 3.5 we give a linear time algorithm for finding a minimum TD-set
in trees.

3.3 Fixed Parameter Tractability

As determining the total domination number of a graph is NP-hard for most classes
of graphs, we need to consider either non-polynomial algorithms or approximation
algorithms or heuristics. Towards the end of the last millennium Downey and
Fellows [58] introduced a new concept to handle NP-hardness, namely, fixed
parameter tractability, which is often abbreviated to FPT.

A problem, P , with size n and a parameter k is fixed parameter tractable (FPT)
if it can be solved in time O(f (k)nc), for some function f (k) not depending on n and
some constant c not depending on n or k. For total domination the parameter used is
normally the size of the solution. So the question is if there exists an algorithm with
complexity O(f (γt (G))nc) to determine the total domination number of a graph G.
Unfortunately, according to the theory of FPT, it is very unlikely that determining
the total domination number is fixed parameter tractable for general graphs. In fact

22 3 Complexity and Algorithmic Results

Table 3.2 FPT-complexity results for the total domination number

Graph class FPT complexity Citation

General graphs W [2]-hard [58]
Graphs with girth 3 or 4∗ W [2]-hard [171] (Philip, G.a)
Girth at least 5∗ FPT (Philip, G.b)
Planar graph FPT [2, 58]
Bounded treewidth∗ FPT [2]
d-degenerate graphs∗ FPT [5] (Alon, N.c)
Bounded maximum degree∗ FPT
∗We give some explanation below.
apersonal communication.
bpersonal communication.
cpersonal communication.

it is shown that the problem is W [2]-hard, which according to FPT theory means
that the problem is not FPT unless a very unlikely collapse of complexity classes
occurs. We will not go into more depth in this area and refer the interested reader to
[58] for more information about FPT.

In Table 3.2 we list for which classes of graphs the problem of determining the
total domination number is FPT and for which classes it is unlikely to be FPT, by
being W [2]-hard.

We next describe some of the graph classes listed in Table 3.2 and approaches to
determine their FPT complexity.

Girth 3 or 4: In this case the same reductions that were used for connected
domination in [171] can be used (Philip, G., personal communication).

Girth at Least Five: Let G be a graph with girth at least 5 and suppose we want
to decide if γt(G) ≤ k, for some k. Let x ∈ V (G) be arbitrary and note that as the
girth is at least five, the vertex x is the only vertex in G that totally dominates more
than one vertex in NG(x). Therefore if dG(x) > k and γt(G) ≤ k, then the vertex x
must belong to every minimum TD-set in G. If dG(x)≤ k, then every TD-set has to
include at least one vertex from NG(x) (in order to totally dominate x), and so by
trying all possibilities, we obtain a search tree with branching factor at most k and
depth at most k, implying that we can find all TD-sets in G of size at most k in time
O(kk(n+m)). Therefore we can also decide if γt(G)≤ k in the same time, implying
that the problem is FPT.

Bounded Treewidth: The notion of treewidth was introduced by Robertson and
Seymour [178] and plays an important role in their fundamental work on graph
minors. We therefore give a brief description of this important notion. A tree
decomposition of a graph G = (V,E) is a pair (Y ,T) where T is a tree with
V (T) = {1,2, . . . ,r} (for some r ≥ 1) and Y = {Yi ⊆ V (G) | i = 1,2, . . . ,r} is a
family of subsets of V (G) such that the following holds: (1) ∪r

i=1Yi =V (G); (2) for
each edge e = {u,v} ∈ E(G), there exists a Yi, such that {u,v} ⊆ Yi; and (3) for all
v ∈V (G), the set of vertices {i | v ∈ Yi} forms a connected subtree of T .

3.5 A Tree Algorithm 23

Given a tree decomposition, which always exists as we could let r = 1 and Y1 =
V (G), the width is max{|Yi| : i = 1,2, . . . ,r}− 1, and the treewidth of a graph is the
smallest possible width that can be obtained by a tree decomposition. A graph is
said to have bounded treewidth if this value is bounded by a constant. For example,
if G is a tree its treewidth can be shown to be 1.

d-Degenerate Graphs: A graph is called d-degenerate if every induced subgraph
has a vertex of degree at most d. It was shown in [5] that it is FPT to find a
dominating set of size at most k (the parameter) in a d-degenerate graph. The
approach in [5] can also be used to show that the equivalent problem for total
domination is FPT (Alon, N., personal communication).

Bounded Maximum Degree: If the maximum degree of a graph is bounded by a
constant d, then the graph is d-degenerate and therefore the problem is FPT by the
equivalent result for d-degenerate graphs. Alternatively it is also easy to see that the
problem is FPT by using a simple search tree. As the size of all neighborhoods is at
most d, the branching factor of the search tree is at most d. Further the depth is at
most k, giving us the desired FPT algorithm (as d is considered a constant).

3.4 Approximation Algorithms

Let Hi = 1+1/2+1/3+ · · ·+1/i, which is the ith harmonic number. It is known that
ln(i)+ ec < Hi < ln(i)+ 1/(2i)+ ec, where ec = 0.57721 . . . is the Euler constant.
Using a result on the problem Minimum Set Cover in [59], the following is shown
in [34].

Theorem 3.1 ([34]). There exists a (HΔ (G) − 1
2)-approximation algorithm for the

problem TOTAL DOMINATION.

Theorem 3.2 ([34]). There exists constants c > 0 and D ≥ 3 such that for every
Δ ≥ D it is NP-hard to approximate the problem TOTAL DOMINATION within a
factor ln(Δ)− c ln ln(Δ) for bipartite graphs with maximum degree Δ .

Note that by Theorem 3.2 it is NP-hard to approximate the problem TOTAL
DOMINATION within a factor ln(Δ)−c ln ln(Δ) for general graphs with maximum
degree Δ ≥ 3.

3.5 A Tree Algorithm

Laskar, Pfaff, Hedetniemi, and Hedetniemi [159] constructed the first linear algo-
rithm for computing the total domination number of a tree. For ease of presentation,
we consider rooted trees. We commonly draw the root of a rooted tree at the
top with the remaining vertices at the appropriate level below the root depending

24 3 Complexity and Algorithmic Results

Fig. 3.1 A rooted tree T with
its parent array

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�
��

�
��

�
��

�����

�����

1

2 3 4

5 6 7 8 9

10 11 12 13

14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
parent [0 1 1 1 2 3 3 3 4 5 6 7 8 12 12]

on their distance from the root. The linear algorithm we present here is similar
to an algorithm due to Mitchell, Cockayne, and Hedetniemi [167] for computing
the domination number of an arbitrary tree in the sense that we root the tree and
systematically consider the vertices of the tree, starting from the vertices at furthest
distance from the root, and carefully select a TD-set S in such a way that the sum
of the distances from the root to the vertices in S is minimum. Given a rooted tree
T with root vertex labeled 1 and with V (T) = {1,2, . . . ,n}, we represent T by a
data structure called a parent array in which the parent of a vertex labeled i is given
by parent[i] with parent[1] = 0 (to indicate that the vertex labeled 1 has no parent).
We assume that the vertices of T are labeled 1,2, . . . ,n so that for i < j, vertex i is at
level less than or equal to that of vertex j (i.e., d(1, i) ≤ d(1, j)). Figure 3.1 shows
an example of a rooted tree T with its parent array.

In Algorithm TREE TOTAL DOMINATION that follows, we will for each ver-
tex, i, keep track of two boolean values In TD Set[i] and TD by child[i], which both
initially will be put to false. As the algorithm progresses some of these values may
change to true. Upon completion of the algorithm, all vertices, i, with In TD Set[i] =
true will be added to the TD-set and all vertices with TD by child[i] = true will
be totally dominated by one of their children. Below we define vertex 0 to be a
dummy vertex that does not exist and parent[1] = parent[0] = 0. We will never change
In TD Set[0] but may change TD by child[0].

Algorithm TREE TOTAL DOMINATION:

Input: A rooted tree T = (V,E) with V = {1,2, . . . ,n} rooted at 1 (where larger
values are further from the root) and represented by an array parent[1 . . .n]

Output: An array In TD Set[] that indicates which vertices belong to the TD-set
Code:

1. for i = 1 to n do {
2. TD by child[i] = false
3. In TD Set[i] = false }
4. for i = n to 2 do
5. if (TD by child[i] = false) and (In TD Set[parent[i]] = false) then {

3.5 A Tree Algorithm 25

6. In TD Set[parent[i]] = true
7. TD by child[parent[parent[i]]] = true }
8. if (TD by child[1] = false) then
9. In TD Set[2] = true

We will now outline why the Algorithm TREE TOTAL DOMINATION does
produce a minimum TD-set. Let S(i) denote all vertices, j, with In TD Set[j] = true,
just after performing line 7 with the value i. We will show that property P(i) below
holds for all i = n,n− 1,n− 2, . . .,2, by induction.

Property P(i): S(i) totally dominates {i, i + 1, i + 2, . . . ,n} and S(i) is a subset
of some minimum TD-set in G. Furthermore the array TD by child is updated
correctly.

Property P(n) is clearly true as the set S(n) only contains the unique neighbor of
vertex n. So let 2 ≤ i < n and assume that property P(i+1) holds and that S(i+1)⊆
Qi+1, where Qi+1 is a minimum TD-set in G. We will now consider the two possible
outcomes of line 5.

If TD by child[i] = false and In TD Set[parent[i]] = false, then some vertex, t, in
Qi+1 must totally dominate i. If t = parent[i], then S(i) ⊆ Qi+1, and therefore S(i)
is a subset of an optimal solution. Moreover as S(i+1) totally dominates {i+1, i+
2, . . . ,n} and the vertex parent[i] ∈ S(i) totally dominates the vertex i, the set S(i)
totally dominates {i, i+ 1, i+ 2, . . . ,n}. Hence we may assume that t is a child of
i, for otherwise the desired result follows. Let Qi = (Qi+1 \ {t})∪{parent[i]} and
note that Qi is a minimum TD-set of G as all neighbors of t, except for the vertex
i, are totally dominated by S(i+ 1) and S(i+ 1) ⊆ Qi. Further, S(i) = S(i+ 1)∪
{parent[i]} ⊆ Qi, and so the set S(i) is a subset of an optimal solution. As before
since the set S(i+1) totally dominates {i+1, i+2, . . . ,n} and the vertex parent[i] ∈
S(i) totally dominates the vertex i, the set S(i) totally dominates {i, i+1, i+2, . . . ,n}.

If TD by child[i] = true or In TD Set[parent[i]] = true, then the vertex i is totally
dominated by S(i+ 1) and therefore S(i) totally dominates {i, i+ 1, i+ 2, . . . ,n}.
Furthermore S(i) = S(i+1)⊆ Qi+1 which implies that S(i) is a subset of an optimal
solution.

It remains for us to verify that the array TD by child is updated correctly.
If j ∈ S(i), then let i j be the value of i when In TD Set[j] is put to true. That is,
parent[i j] = j. In line 7, TD by child[parent[j]] is then put to true. Furthermore
suppose that TD by child[j′] = true for some vertex j′. Let i′j be the value of i when
TD by child[j′] was put to true. That is, parent[parent[i′j]] = j′. In line 6, parent[i′j] is
then put to true, which implies that the child parent[i′j] of the vertex j′ belongs to the
TD-set, as desired. This implies that TD by child is updated correctly. Therefore,
Property P(i) holds.

As Property P(2) holds, we note that the set S(2) is a subset of an optimal solution
Q2, say, and S(2) totally dominates all vertices in G, except possibly for vertex 1.
Therefore if vertex 1 is totally dominated by S(2), then S(2) = Q2 and S2 is an
optimal solution. On the other hand, if vertex 1 is not totally dominated by S(2),
then some vertex, z, in Q2 must totally dominate vertex 1. Thus, z is a child of

26 3 Complexity and Algorithmic Results

vertex 1 and the set S(1) = Q1 = (Q2 \ {z})∪{2} is an optimal solution. Therefore
TREE TOTAL DOMINATION does indeed find an optimal solution.

It is also not difficult to see that the time complexity of the algorithm is O(n) for
trees of order n.

When we run our algorithm on the rooted tree T in Fig. 3.1, the following steps
will be performed, yielding the set {12,8,7,6,5,4,3,2,1} as a minimum TD-set in
T , as the if statement in line 8 will be false.

i Action i Action i Action

15 In TD Set[12] = true 10 In TD Set[5] = true 5 In TD Set[2] = true
14 None 9 In TD Set[4] = true 4 In TD Set[1] = true
13 In TD Set[8] = true 8 In TD Set[3] = true 3 None
12 In TD Set[7] = true 7 None 2 None

11 In TD Set[6] = true 6 None

3.6 A Simple Heuristic

In this section we will give a simple heuristic that finds a TD-set in a graph G of
size at most n(G)(1+ lnδ (G))/δ (G). Furthermore, in Theorem 3.4 it is shown that
there exist graphs where there do not exist TD-sets of size much smaller than this.

The heuristic simply keeps choosing the vertex that totally dominates the
maximum number of vertices which are not yet totally dominated and adding this
vertex to our TD-set. It continues to do this until all vertices are totally dominated.
Below is the code for this heuristic, where T will be our TD-set and Not TD will
contain the vertices that are not totally dominated by T .

Heuristic TOTAL DOMINATION:

Input: A graph G = (V,E) with minimum degree δ ≥ 1 and order n.
Output: A TD-set T of G.
Code:

1. T = /0
2. Not TD =V (G)
3. While Not TD
= /0 do {
4. Let x ∈V (G) have maximum dNot TD(x)
5. T = T ∪{x}
6. Not TD = Not TD\N(x) }
7. }

3.6 A Simple Heuristic 27

The fact that Heuristic TOTAL DOMINATION finds a TD-set of size at most
n(G)(1+ lnδ (G))/δ (G) was shown in [130], by considering the open neighborhood
hypergraph, HG, of G. We will below give a proof of this result not involving
hypergraphs.

It is not too difficult to show that with the correct implementation, the Heuristic
TOTAL DOMINATION can be made to run in time O(n+m). It would require us
to keep a data structure (such as a hash table) that allows us to perform line 4 in
constant time. We would then need to continuously update the degrees dNot TD()
and note that we can decrease such degrees at most 2m(G) times (when removing
vertices from Not TD as ∑v∈G dG(v) = 2m(G)). We will leave the details of the
complexity computations to the interested reader.

In fact if all we want is the bound n(G)(1+ lnδ (G))/δ (G), then we can find
a TD-set of size at most in this time O(n + δ (G)n) by considering the open
neighborhood hypergraph, HG, of G and making it δ (G)-uniform. However in
practice the heuristic given in this section will generally perform better (when G
is not regular).

Theorem 3.3. If G is a graph with minimum degree δ ≥ 1, order n, and size m, then
Heuristic TOTAL DOMINATION produces a TD-set T in G satisfying

|T | ≤
(

1+ lnδ
δ

)
n.

The complexity of the algorithm is O(n+m).

Proof. Clearly the theorem is true for δ = 1, so assume that δ ≥ 2. Let Tδ be
the vertices added to T in line 5 of the Heuristic TOTAL DOMINATION with
dNot TD(x) ≥ δ (see line 4 of the heuristic). Let Ti be the vertices added to T
with dNot TD(x) = i for i = 1,2, . . . ,δ − 1. Let Not TDi denote the set Not TD
after having added all vertices in Ti+1 ∪ Ti+2 ∪ ·· · ∪ Tδ to T . That is, Not TDi =
V (G)\ (∪δ

j=i+1N(Tj)). Furthermore let ti = |Ti| for all i = 1,2, . . . ,δ . Then,

T =
δ⋃

i=1

Ti and |T |=
δ

∑
i=1

ti.

Given any i ∈ {1,2, . . . ,δ}, we have that

∑
v∈Not TDi

dG(v) = ∑
w∈V (G)

dNot TDi
(w), (3.1)

since every edge with exactly one end in Not TDi adds 1 to both sides of the
equation, every edge with both ends in Not TDi adds 2 to both sides of the equation,
and all other edges do not affect either side. Further since dNot TDi

(w) ≤ i for all
w ∈V (G), Eq. (3.1) implies that

28 3 Complexity and Algorithmic Results

∑
v∈Not TDi

dG(v)≤ in. (3.2)

For 1 ≤ j ≤ i ≤ δ − 1, every vertex x ∈ Tj removes j vertices from Not TD j,
while every vertex x ∈ Tδ removes at least δ vertices from Not TDδ . Hence, for
each value of i with i ∈ {1,2, . . . ,δ}, we have that

|Not TDi|=
i

∑
j=1

(
∑

x∈Tj

dNot TD j
(x)

)
≥

i

∑
j=1

jt j . (3.3)

By Eqs. (3.2) and (3.3), we therefore have that for each value of i with i ∈
{1,2, . . . ,δ},

δ
i

∑
j=1

jt j ≤ δ |Not TDi| ≤ ∑
v∈Not TDi

dG(v)≤ in,

and so,
i

∑
j=1

jt j ≤ in
δ
.

Therefore there exist nonnegative real numbers ε0,ε1, . . . ,εδ such that

i

∑
j=1

jt j =
in
δ
− εi

for all i = 0,1, . . . ,δ , where ε0 = 0. This implies that for each value of j with j ∈
{1,2, . . . ,δ}, we have the following equation:

jt j =
j

∑
i=1

iti −
j−1

∑
i=1

iti =
jn
δ

− ε j −
[
(j− 1)n

δ
− ε j−1

]
=

n
δ
− (ε j − ε j−1).

Thus,

|T |=
δ

∑
i=1

ti =
δ

∑
i=1

(n
iδ

)
− εδ

δ
−

δ−1

∑
i=1

εi

(
1
i
− 1

i+ 1

)
≤

δ

∑
i=1

(n
iδ

)
.

Therefore,

|T | ≤ n
δ

δ

∑
i=1

1
i
≤ n

δ
(1+ lnδ) =

(
1+ lnδ

δ

)
n.

This completes the proof of the bound in the theorem. The time complexity follows
from the discussion preceding the statement of the theorem. ��

3.6 A Simple Heuristic 29

For sufficiently large δ , the bound on the size of the TD-set produced by Heuristic
TOTAL DOMINATION is close to optimal, as can be deduced from the following
result.

Theorem 3.4 ([207]). For every k ≥ 1, there exists a bipartite k-regular graph, G,

with γt(G)>
(

0.1 ln(k)
k

)
n(G).

	Chapter3 Complexity and Algorithmic Results
	3.1 Introduction
	3.2 Complexity
	3.2.1 Time Complexities

	3.3 Fixed Parameter Tractability
	3.4 Approximation Algorithms
	3.5 A Tree Algorithm
	3.6 A Simple Heuristic

