

TÓPICOS AVANZADOS EN OPTIMIZACIÓN COMBINATORIA Y TEORÍA DE GRAFOS

Docentes: Daniel Severin, Pablo Torres

PRÁCTICA Nº 3: MATROIDES, PROPIEDAD HEREDITARIA, DESCRIPCIÓN DE FAMILIAS POR SUBGRAFOS PROHIBIDOS

- 1. Pruebe que las siguientes estructuras $(\mathcal{S}, \mathcal{I})$ son matroides:
 - (a) Subconjuntos de columnas l.i.: Sea $A \in \mathbb{R}^{m \times n}$, $S = \{1, ..., n\}$ e $\mathcal{I} = \{J \subseteq S : \text{las columnas indexadas por los elementos de } J \text{ son l.i.} \}.$
 - (b) Uniforme: Sea $k \in \mathbb{N}$, S un conjunto finito e $\mathcal{I} = \{J \subseteq S : |J| \le k\}$.
- 2. Sea (S, \mathcal{I}) un sistema independiente. Pruebe que los siguientes enunciados son equivalentes entre sí:
 - (M2) Para todo $A \subset \mathcal{S}$ y $J_1, J_2 \in \mathcal{I}$ conjuntos independientes maximales de $A, |J_1| = |J_2|$.
- (M2') Para todos $J_1, J_2 \in \mathcal{I}$ tales que $|J_1| < |J_2|$, existe un $e \in J_2 \setminus J_1$ tal que $J_1 \cup \{e\} \in \mathcal{I}$.
- (M2") Para todo $A \subset \mathcal{S}$ y $J \in \mathcal{I}$ tal que J es un conjunto independiente maximal de A, tenemos que J es un conjunto independiente máximo de A.

Recuerde:

- $J \in \mathcal{I}$ es maximal en $A \subset \mathcal{S}$ si $J \subset A$ y todo $e \in A \setminus J$ satisface $J \cup \{e\} \notin \mathcal{I}$.
- $J \in \mathcal{I}$ es $m\'{a}ximo$ en $A \subset \mathcal{S}$ si $J \subset A$ y todo $J' \in \mathcal{I}$ tal que $J' \subset A$ satisface $|J'| \leq |J|$.
- 3. Considere un grafo bipartito $G = (V_1 \cup V_2, E)$, es decir $E \subseteq V_1 \times V_2$.
 - (a) Pruebe que si S = E e $\mathcal{I}_M = \{J \subseteq E : J \text{ es un matching de } G\}$ entonces (S, \mathcal{I}_M) es un sistema independiente pero no un matroide.
 - (b) Sea $\mathcal{S} = E$. Pruebe que, para i = 1, 2, si

 $\mathcal{I}_i = \{J \subseteq E : \text{cada } v \in V_i \text{ es incidente en a lo sumo un arco de } J\},\$

 $(\mathcal{S}, \mathcal{I}_i)$ es una matroide.

- (c) Pruebe que $\mathcal{I}_M = \mathcal{I}_1 \cap \mathcal{I}_2$.
- 4. Sea G = (V, E) un grafo.
 - (a) Pruebe que si G es conexo, todo bosque maximal es un árbol.
 - (b) Pruebe que el *Problema del Árbol Generador Mínimo* se puede reducir al *Problema del Bosque de Peso Máximo*.
 - (c) Pruebe que, si S = E e $I = \{J \subseteq S : J \text{ es bosque de } G\}$, (S, I) es una matroide.

- (d) Recordando que el algoritmo goloso resuelve correctamente el *Problema de Conjunto Independiente de Costo Máximo* sobre toda matroide y utilizando los items anteriores, pruebe que el algoritmo de Kruskal (al final de la práctica 2) resuelve correctamente el *Problema del Árbol Generador Mínimo*.
- 5. Se dice que una propiedad \mathscr{P} sobre grafos es hereditaria (por subgrafos inducidos por nodos) si para cualquier grafo G que satisface \mathscr{P} , todo subgrafo inducido por nodos de G también satisface \mathscr{P} . Determine cuáles de las siguientes propiedades son hereditarias:
 - (a) G es bipartito
 - (b) G es planar
 - (c) G tiene un circuito euleriano
 - (d) G tiene un circuito hamiltoniano
 - (e) G tiene un k-coloreo
 - (f) G tiene un matching perfecto.
- 6. Para familias de grafos definidas de la forma

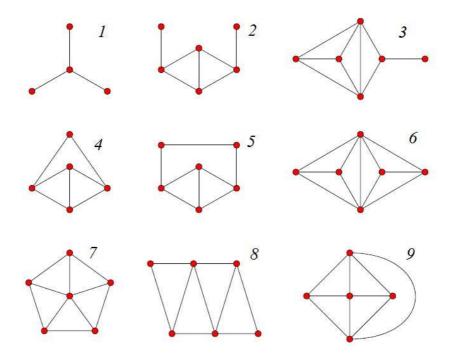
$$\mathcal{G} = \{G : G \text{ es un grafo con la propiedad } \mathscr{P}\},\$$

con \mathscr{P} una propiedad hereditaria, decimos que G es mínimamente no \mathscr{P} si $G \notin \mathcal{G}$ y, para todo $v \in V(G), G \setminus \{v\} \in \mathcal{G}$.

- (a) Pruebe que $G \in \mathcal{G}$ si y sólo si G no contiene como subgrafo inducido ningún grafo mínimamente no \mathscr{P} .

 Observación: Por esta propiedad, los grafos mínimamente no \mathscr{P} se denominan subgrafos prohibidos minimales de \mathscr{G} .
- (b) Caracterice los grafos mínimamente no bipartitos.
- 7. Un grafo G = (V, E) se dice *split* si existe una bipartición de V en los conjuntos Q y S tales que Q induce un grafo completo y S es un conjunto estable. Sea \mathcal{G} la familia de grafos split.
 - (a) Pruebe que ser split es hereditario.
 - (b) Pruebe que \mathcal{G} es autocomplementaria (es decir, $G \in \mathcal{G} \iff \overline{G} \in \mathcal{G}$).
 - (c) Pruebe que los circuitos de 4 y 5 vértices son mínimamente no splits. ¿Son éstos los únicos subgrafos prohibidos de \mathcal{G} ?
- 8. Un grafo G es perfecto si para todo subgrafo $G' \subset G$, $\omega(G') = \chi(G')$. Es decir, G' se puede colorear con k colores, siendo k el tamaño de la máxima clique de G'.
 - (a) Pruebe que ser perfecto es hereditario.
 - (b) Decimos que G' es un agujero impar de G si $G' \subset G$ y G' es un circuito impar de al menos 5 vértices. Análogamente, decimos que G' es un anti-agujero impar de G si $G' \subset G$ y G' es el complemento de un circuito impar. Pruebe que los agujeros y anti-agujeros impares son mínimamente no perfectos.
- 9. Un grafo G = (V, E) es de línea si existe $G^* = (V^*, E^*)$ tal que $V = E^*$ y $(e_1, e_2) \in E$ si y sólo si e_1 y e_2 comparten un extremo en G^* . Por ejemplo, un completo K_n es un grafo de línea (por la existencia de $K_{1,n}$ en donde todas sus aristas son incidentes entre sí).

- (a) Pruebe que ser de línea es hereditario.
- (b) Pruebe que, en todo grafo de línea, sus aristas pueden ser particionadas en subgrafos completos de modo tal que todo nodo pertenece a lo sumo a dos subgrafos completos.
- (c) Se sabe que los grafos de la lista son todos los subgrafos prohibidos de los grafos de línea [GC, pág. 110]. Seleccione un grafo de la lista de 5 vértices y otro de 6 vértices y pruebe que son mínimamente no de línea.



Bibligrafía:

[LCO] W. Cook, W. Cunningham, W. Pulleyblank A. Schrijver. *Combinatorial Optimization*. Wiley-Interscience.

[GC] Andreas Brandstädt, Van Bang Le, Jeremy P. Spinrad. *Graph classes: a survey*. SIAM monographs on discrete mathematics and applications, 1999.