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Ordinary Differential Equations (ODEs) Models

Lumped parameter models coming from mechanics,
electromagnetism, chemistry, thermodynamics, hydraulics,
etc. are usually represented by sets of Ordinary Differential
Equations of the form:

ẋ1(t) = f1(x1(t), · · · , xn(t), t)

ẋ2(t) = f2(x1(t), · · · , xn(t), t)

...

ẋn(t) = fn(x1(t), · · · , xn(t), t)

(1)

where t represents time, xi (t) are the state variables and
ẋi (t) represents xi (t) first time derivative.
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Ordinary Differential Equations (ODEs) Models

The system represented by Eq.(1) can be written in a
compact manner by using vector notation:

ẋ(t) = f(x(t), t) (2)

where
x(t) , [x1(t), x2(t), · · · , xn(t)]T

is the states vector, for which initial conditions are usually
known

x(t0) = x0 (3)
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Continuous Systems Simulation

In order to simulate system of Eq.(2), the equation must be
solved from the initial condition x0.

In general, analytically solving Eq.(2) is impossible.

For that reason, Numerical Integration Methods of ODEs are
used, which attempt to provide an approximated solution.
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Classic Numerical Integration Methods

Given the system
ẋ(t) = f(x(t), t)

with initial conditions x(t0) = x0, the aim of numerical
integration methods is to obtain an approximated solution
for times t1, t2, · · · , tN .

x̃1 ≈ x(t1), x̃2 ≈ x(t2), · · · , x̃N ≈ x(tN),

The difference hk , tk+1 − tk is called integration step and
may be constant or variable.
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Classic Numerical Integration Methods

Single-step methods

These methods compute xk+1 just by using information
about xk . (Runge–Kutta methods)

Multi-step methods

These methods compute xk+1 by using information about xk
and some other previous instants (xk−1, etc).

Implicit methods

Implicit methods (single of multi-step) use future
information to compute xk+1, so an equation is required to
be solved in every step.

• they present advantages as regards to numerical stability

• their implementation require iterative algorithms
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Stiff Systems

These systems simultaneously present slow and fast
dynamics.

At first, a small step should be used, and then enlarge it as
fast dynamics fades away.

Problem: explicit methods became numerically unstable
when step h is enlarged.

Hence, when dealing with stiff systems, the use of implicit
algorithms with step control is mandatory.
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Discontinuous Systems

The model of a simple ball falling and
bouncing on the floor is the following:

ẏ(t) = v(t)

v̇(t) =

{
−g if y(t) > 0

−g − k
m · y(t) − b

m · v(t) if y(t) ≤ 0

This ODE has a discontinuity in y = 0.

Integration methods might produce
unacceptable errors. Detection of instants
in which y(t) = 0 in necessary, and from
that point, the simulation must restart.

\tex{$y(t)$}
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Some problematic cases

There are diverse systems in which classic integration
methods result inefficient, among them:

• Systems with very frequent discontinuities (typical in
Power Electronics).

• Large scale stiff systems (e.g.
Advection–Diffusion–Reaction equation semi–discretized
with the Method of Lines).
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QSS1

Quantification function with hysteresis

\tex{$x_i$}

\tex{$q_i$}

\tex{$t$}

\tex{$\Delta Q_i$}
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QSS1 Method

Definition

Given the system
ẋ(t) = f(x(t), t)

the QSS1 approximation is given by

ẋ(t) = f(q(t), t)

where q(t) and x(t) are componentwise linked by hysteresis
quantification functions.

• q(t) is the quantized states vector.

• Each quantification function is determined by a
parameter ∆Qi called Quantum.
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QSS – Characteristics

Advantages

• Good stability and error bounding.

• Great advantages when simulating discontinuous
systems.

Disadvantages

• Appearance of oscillations. Troubles with stiff systems.

• Number of steps grow linearly with precision.
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QSS1 Method

Zero order quantification

• First order
method.

• Number of
steps grows
linearly with
precision.
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QSS2 Method

First order quantification • Same
properties
and
advantages
as QSS1.

• Second order
method.

• Number of
steps grows
with the
square root
of precision.
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QSS3 Method

Second order quantification • Same
properties
and
advantages
as QSS1.

• Third order
method.

• Number of
steps grows
with the
cube root of
precision.
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Oscillations in QSS

Consider

ẋ(t) = 2,5 − x(t)

and its QSS1
approximation

ẋ(t) = 2,5 − q(t)

with ∆Q = 1 y
x(0) = 0.
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• Usually, QSS solutions end with
oscillations around the equilibrium.

• This leads to some issues in stiff
systems.
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Linearly Implicit QSS Methods

Classic methods suitable for stiff systems are based on future
values of the state to compute their derivatives (implicit
methods).

• In QSS methods, qi (t) is always a past value of xi (t).

• The idea in LIQSS is that qi (t) takes a future state
value.

Since we always know the future value in the next step
(xi (t) ± ∆Qi ), the problem results tu be explicit.
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LIQSS1 Method

Consider the
equation

ẋ(t) = 2,5 − x(t)

and its LIQSS1
approximation

ẋ(t) = 2,5 − q(t)

with ∆Q = 1 y
x(0) = 0.
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In this case, final oscillations no longer
exist.
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LIQSS methods

• There are LIQSS methods of order 1 to 3.

• These methods efficiently integrate stiff systems where
the stiffness is due to large entries in the main diagonal
of the Jacobian matrix.
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Oscillations in LIQSS

Consider now

ẋ1 = −x1 − x2 + 0,2

ẋ2 = x1 − x2 + 1,2

with ∆Q = 1,
x1(0) = −4 and
x2(0) = 4.
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In this case oscillations appear due
to the interaction of state variables
x1 and x2.
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Improved LIQSS1 method

Consider now

ẋ1 = −x1 − x2 + 0,2

ẋ2 = x1 − x2 + 1,2

with ∆Q = 1,
x1(0) = −4 and
x2(0) = 4.
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Now oscillations due to the
interaction of state variables x1 and
x2 no longer exist.
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Results: Interleaved Ćuk converter
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Summary

A modification to the LIQSS1 Method was proposed.

• Allows to efficiently simulate stiff systems with more
general structures than before.

• Implemented in the QSS standalone solver.
https://sourceforge.net/projects/qssengine/

• It is the first theoretical step to develop higher order
improved LIQSS methods.

• It is also the first approach to effectively combine QSS
and classic discrete time ODE solvers.
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(not so) Future work

• Extending the idea for higer orders methods.
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• Study these methods in a wider variety of applications.
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Thank you!
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